Granulocyte-macrophage colony-stimulating factor improves mouse peripheral nerve regeneration following sciatic nerve crush. 2018

André Luis Bombeiro, and Bruna Toledo Nunes Pereira, and Alexandre Leite Rodrigues de Oliveira
Department of Structural and Functional Biology, Institute of Biology, University of Campinas - UNICAMP, Campinas, Brazil.

Peripheral nerve injuries severely impair patients' quality of life as full recovery is seldom achieved. Upon axonal disruption, the distal nerve stump undergoes fragmentation, and myelin breaks down; the subsequent regeneration progression is dependent on cell debris removal. In addition to tissue clearance, macrophages release angiogenic and neurotrophic factors that contribute to axon growth. Based on the importance of macrophages for nerve regeneration, especially during the initial response to injury, we treated mice with granulocyte-macrophage colony-stimulating factor (GM-CSF) at various intervals after sciatic nerve crushing. Sciatic nerves were histologically analyzed at different time intervals after injury for the presence of macrophages and indicators of regeneration. Functional recovery was followed by an automated walking track test. We found that GM-CSF potentiated early axon growth, as indicated by the enhanced expression of growth-associated protein at 7 days postinjury. Inducible nitric oxide synthase expression increased at the beginning and at the end of the regenerative process, suggesting that nitric oxide is involved in axon growth and pruning. As expected, GM-CSF treatment stimulated macrophage infiltration, which increased at 7 and 14 days; however, it did not improve myelin clearance. Instead, GM-CSF stimulated early brain-derived neurotrophic factor (BDNF) production, which peaked at 7 days. Locomotor recovery pattern was not improved by GM-CSF treatment. The present results suggest that GM-CSF may have beneficial effects on early axonal regeneration.

UI MeSH Term Description Entries
D008124 Locomotion Movement or the ability to move from one place or another. It can refer to humans, vertebrate or invertebrate animals, and microorganisms. Locomotor Activity,Activities, Locomotor,Activity, Locomotor,Locomotor Activities
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D008297 Male Males
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D009186 Myelin Sheath The lipid-rich sheath surrounding AXONS in both the CENTRAL NERVOUS SYSTEMS and PERIPHERAL NERVOUS SYSTEM. The myelin sheath is an electrical insulator and allows faster and more energetically efficient conduction of impulses. The sheath is formed by the cell membranes of glial cells (SCHWANN CELLS in the peripheral and OLIGODENDROGLIA in the central nervous system). Deterioration of the sheath in DEMYELINATING DISEASES is a serious clinical problem. Myelin,Myelin Sheaths,Sheath, Myelin,Sheaths, Myelin
D009416 Nerve Regeneration Renewal or physiological repair of damaged nerve tissue. Nerve Tissue Regeneration,Nervous Tissue Regeneration,Neural Tissue Regeneration,Nerve Tissue Regenerations,Nervous Tissue Regenerations,Neural Tissue Regenerations,Regeneration, Nerve,Regeneration, Nerve Tissue,Regeneration, Nervous Tissue,Regeneration, Neural Tissue,Tissue Regeneration, Nerve,Tissue Regeneration, Nervous,Tissue Regeneration, Neural
D004195 Disease Models, Animal Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. Animal Disease Model,Animal Disease Models,Disease Model, Animal
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon
D012584 Sciatic Nerve A nerve which originates in the lumbar and sacral spinal cord (L4 to S3) and supplies motor and sensory innervation to the lower extremity. The sciatic nerve, which is the main continuation of the sacral plexus, is the largest nerve in the body. It has two major branches, the TIBIAL NERVE and the PERONEAL NERVE. Nerve, Sciatic,Nerves, Sciatic,Sciatic Nerves

Related Publications

André Luis Bombeiro, and Bruna Toledo Nunes Pereira, and Alexandre Leite Rodrigues de Oliveira
January 2012, PloS one,
André Luis Bombeiro, and Bruna Toledo Nunes Pereira, and Alexandre Leite Rodrigues de Oliveira
July 1992, The New England journal of medicine,
André Luis Bombeiro, and Bruna Toledo Nunes Pereira, and Alexandre Leite Rodrigues de Oliveira
July 1992, The New England journal of medicine,
André Luis Bombeiro, and Bruna Toledo Nunes Pereira, and Alexandre Leite Rodrigues de Oliveira
July 2016, Neurochemical research,
André Luis Bombeiro, and Bruna Toledo Nunes Pereira, and Alexandre Leite Rodrigues de Oliveira
January 1990, Immunology series,
André Luis Bombeiro, and Bruna Toledo Nunes Pereira, and Alexandre Leite Rodrigues de Oliveira
January 1990, Biotherapy (Dordrecht, Netherlands),
André Luis Bombeiro, and Bruna Toledo Nunes Pereira, and Alexandre Leite Rodrigues de Oliveira
July 2010, Nihon rinsho. Japanese journal of clinical medicine,
André Luis Bombeiro, and Bruna Toledo Nunes Pereira, and Alexandre Leite Rodrigues de Oliveira
August 2005, Nihon rinsho. Japanese journal of clinical medicine,
André Luis Bombeiro, and Bruna Toledo Nunes Pereira, and Alexandre Leite Rodrigues de Oliveira
July 1991, Journal of pediatric oncology nursing : official journal of the Association of Pediatric Oncology Nurses,
André Luis Bombeiro, and Bruna Toledo Nunes Pereira, and Alexandre Leite Rodrigues de Oliveira
January 2021, Neurologia i neurochirurgia polska,
Copied contents to your clipboard!