In vitro neurotoxicity of excitatory acid analogues during cerebellar development. 1986

G Garthwaite, and J Garthwaite

The neurotoxic effects of the selective excitatory amino acid receptor agonists, quisqualate, kainate and N-methyl-D-aspartate, were studied in slice preparations of cerebellum from rats at different stages of postnatal development. With increasing age, (i) Purkinje cells became more vulnerable to kainate and quisqualate but remained insensitive to N-methyl-D-aspartate (up to 300 microM); (ii) Golgi cells became more sensitive to kainate, quisqualate and N-methyl-D-aspartate; (iii) granule cells became more sensitive to kainate, less sensitive to N-methyl-D-aspartate and remained unaffected by quisqualate (up to 100 microM), and (iv) basket and stellate cells and, up to 14 days of age, neurones of the deep cerebellar nuclei, became more vulnerable to kainate and quisqualate, but their sensitivity to N-methyl-D-aspartate stayed the same. The neurotoxicity of N-methyl-D-aspartate, but not that of kainate in 8-day-old cerebellar slices was prevented by 2-amino-5-phosphonovaleric acid; tetrodotoxin did not affect the toxicity of the agonists in 8-day-old or adult slices. The results with kainate are consistent with other studies indicating an insensitivity of the immature brain to its neurotoxic effects, but suggest that this property is not a peculiarity of kainate. Alterations in excitatory potency can explain some of the observed developmental changes. However, other observations cannot readily be accounted for on the basis of either changes in excitatory potency, the functional maturation of cerebellar circuits, changes in synaptic density, or the developmental appearance of Ca2+ channels in susceptible cells, suggesting that additional factors play an important role in the neurotoxic effects of the excitants.

UI MeSH Term Description Entries
D007608 Kainic Acid (2S-(2 alpha,3 beta,4 beta))-2-Carboxy-4-(1-methylethenyl)-3-pyrrolidineacetic acid. Ascaricide obtained from the red alga Digenea simplex. It is a potent excitatory amino acid agonist at some types of excitatory amino acid receptors and has been used to discriminate among receptor types. Like many excitatory amino acid agonists it can cause neurotoxicity and has been used experimentally for that purpose. Digenic Acid,Kainate,Acid, Digenic,Acid, Kainic
D008297 Male Males
D009498 Neurotoxins Toxic substances from microorganisms, plants or animals that interfere with the functions of the nervous system. Most venoms contain neurotoxic substances. Myotoxins are included in this concept. Alpha-Neurotoxin,Excitatory Neurotoxin,Excitotoxins,Myotoxin,Myotoxins,Neurotoxin,Alpha-Neurotoxins,Excitatory Neurotoxins,Excitotoxin,Alpha Neurotoxin,Alpha Neurotoxins,Neurotoxin, Excitatory,Neurotoxins, Excitatory
D010069 Oxadiazoles Compounds containing five-membered heteroaromatic rings containing two carbons, two nitrogens, and one oxygen atom which exist in various regioisomeric forms. Oxadiazole
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D002531 Cerebellum The part of brain that lies behind the BRAIN STEM in the posterior base of skull (CRANIAL FOSSA, POSTERIOR). It is also known as the "little brain" with convolutions similar to those of CEREBRAL CORTEX, inner white matter, and deep cerebellar nuclei. Its function is to coordinate voluntary movements, maintain balance, and learn motor skills. Cerebella,Corpus Cerebelli,Parencephalon,Cerebellums,Parencephalons
D005260 Female Females
D000375 Aging The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time. Senescence,Aging, Biological,Biological Aging
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

G Garthwaite, and J Garthwaite
January 1982, Neuropharmacology,
G Garthwaite, and J Garthwaite
January 2002, Advances in experimental medicine and biology,
G Garthwaite, and J Garthwaite
August 1987, Neuroscience,
G Garthwaite, and J Garthwaite
January 1994, Neurotoxicology,
G Garthwaite, and J Garthwaite
January 1991, Progress in biophysics and molecular biology,
G Garthwaite, and J Garthwaite
January 1993, NIDA research monograph,
Copied contents to your clipboard!