Molecular basis for substrate specificity of protein kinases and phosphatases. 1986

J W Sparks, and D L Brautigan

Regulation of various metabolic processes occurs by the phosphorylation/dephosphorylation of enzymes. Both the protein kinases that catalyze the phosphorylations and the protein phosphatases that catalyze the dephosphorylations display relatively broad specificity, reacting with a number of distinct sites in target enzymes. In this way changes in the activity of a particular kinase or phosphatase can cause coordinated and pleiotropic responses. However, the kinases and phosphatases do not exhibit a one-to-one correspondence in their reactions. Residues at different positions may be phosphorylated by a single kinase, yet dephosphorylated by different individual phosphatases. Conversely, sites which are substrates for different individual kinases may be dephosphorylated by a single phosphatase. In exploring the molecular basis for these differences this article shows that whereas kinases react with specific primary structures that often times appear as beta bends, the phosphatases recognize higher order structure, less strictly ruled by amino acid sequence surrounding the phosphorylated site. The differences, seen in the ability of these enzymes to utilize synthetic peptide substrates, might be rationalized in terms of function. Kinases need protruding segments of structure that can be enwrapped to exclude water, thereby minimizing ATP hydrolysis and enhancing phosphotransferase activity. On the other hand phosphatases are hydrolytic enzymes that may operate especially well on protein interfaces. Hydrolytic action often measured with p-nitrophenylphosphate is not necessarily indicative of a protein phosphatase and consideration of the mechanism reveals why this substrate can be misleading.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009597 4-Nitrophenylphosphatase An enzyme that catalyzes the hydrolysis of nitrophenyl phosphates to nitrophenols. At acid pH it is probably ACID PHOSPHATASE (EC 3.1.3.2); at alkaline pH it is probably ALKALINE PHOSPHATASE (EC 3.1.3.1). EC 3.1.3.41. 4-Nitrophenyl Phosphatase,K+-NPPase,K-Dependent p-Nitrophenylphosphatase,K-p NPPase,Nitrophenyl Phosphatase,p-NPPase,p-Nitrophenylphosphatase,para-Nitrophenyl Phosphatase,para-Nitrophenylphosphatase,4 Nitrophenyl Phosphatase,4 Nitrophenylphosphatase,K Dependent p Nitrophenylphosphatase,K p NPPase,K+ NPPase,p NPPase,p Nitrophenylphosphatase,p-Nitrophenylphosphatase, K-Dependent,para Nitrophenyl Phosphatase,para Nitrophenylphosphatase
D010749 Phosphoprotein Phosphatases A group of enzymes removing the SERINE- or THREONINE-bound phosphate groups from a wide range of phosphoproteins, including a number of enzymes which have been phosphorylated under the action of a kinase. (Enzyme Nomenclature, 1992) Phosphoprotein Phosphatase,Phosphoprotein Phosphohydrolase,Protein Phosphatase,Protein Phosphatases,Casein Phosphatase,Ecto-Phosphoprotein Phosphatase,Nuclear Protein Phosphatase,Phosphohistone Phosphatase,Phosphoprotein Phosphatase-2C,Phosphoseryl-Protein Phosphatase,Protein Phosphatase C,Protein Phosphatase C-I,Protein Phosphatase C-II,Protein Phosphatase H-II,Protein-Serine-Threonine Phosphatase,Protein-Threonine Phosphatase,Serine-Threonine Phosphatase,Threonine Phosphatase,Ecto Phosphoprotein Phosphatase,Phosphatase C, Protein,Phosphatase C-I, Protein,Phosphatase C-II, Protein,Phosphatase H-II, Protein,Phosphatase, Casein,Phosphatase, Ecto-Phosphoprotein,Phosphatase, Nuclear Protein,Phosphatase, Phosphohistone,Phosphatase, Phosphoprotein,Phosphatase, Phosphoseryl-Protein,Phosphatase, Protein,Phosphatase, Protein-Serine-Threonine,Phosphatase, Protein-Threonine,Phosphatase, Serine-Threonine,Phosphatase, Threonine,Phosphatase-2C, Phosphoprotein,Phosphatases, Phosphoprotein,Phosphatases, Protein,Phosphohydrolase, Phosphoprotein,Phosphoprotein Phosphatase 2C,Phosphoseryl Protein Phosphatase,Protein Phosphatase C I,Protein Phosphatase C II,Protein Phosphatase H II,Protein Phosphatase, Nuclear,Protein Serine Threonine Phosphatase,Protein Threonine Phosphatase,Serine Threonine Phosphatase
D011494 Protein Kinases A family of enzymes that catalyze the conversion of ATP and a protein to ADP and a phosphoprotein. Protein Kinase,Kinase, Protein,Kinases, Protein
D006152 Cyclic GMP Guanosine cyclic 3',5'-(hydrogen phosphate). A guanine nucleotide containing one phosphate group which is esterified to the sugar moiety in both the 3'- and 5'-positions. It is a cellular regulatory agent and has been described as a second messenger. Its levels increase in response to a variety of hormones, including acetylcholine, insulin, and oxytocin and it has been found to activate specific protein kinases. (From Merck Index, 11th ed) Guanosine Cyclic 3',5'-Monophosphate,Guanosine Cyclic 3,5 Monophosphate,Guanosine Cyclic Monophosphate,Guanosine Cyclic-3',5'-Monophosphate,3',5'-Monophosphate, Guanosine Cyclic,Cyclic 3',5'-Monophosphate, Guanosine,Cyclic Monophosphate, Guanosine,Cyclic-3',5'-Monophosphate, Guanosine,GMP, Cyclic,Guanosine Cyclic 3',5' Monophosphate,Monophosphate, Guanosine Cyclic
D006868 Hydrolysis The process of cleaving a chemical compound by the addition of a molecule of water.
D000135 Acid Phosphatase An enzyme that catalyzes the conversion of an orthophosphoric monoester and water to an alcohol and orthophosphate. EC 3.1.3.2. Acid beta-Glycerophosphatase,Acid beta Glycerophosphatase
D000242 Cyclic AMP An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH. Adenosine Cyclic 3',5'-Monophosphate,Adenosine Cyclic 3,5 Monophosphate,Adenosine Cyclic Monophosphate,Adenosine Cyclic-3',5'-Monophosphate,Cyclic AMP, (R)-Isomer,Cyclic AMP, Disodium Salt,Cyclic AMP, Monoammonium Salt,Cyclic AMP, Monopotassium Salt,Cyclic AMP, Monosodium Salt,Cyclic AMP, Sodium Salt,3',5'-Monophosphate, Adenosine Cyclic,AMP, Cyclic,Adenosine Cyclic 3',5' Monophosphate,Cyclic 3',5'-Monophosphate, Adenosine,Cyclic Monophosphate, Adenosine,Cyclic-3',5'-Monophosphate, Adenosine,Monophosphate, Adenosine Cyclic
D000469 Alkaline Phosphatase An enzyme that catalyzes the conversion of an orthophosphoric monoester and water to an alcohol and orthophosphate. EC 3.1.3.1.
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities

Related Publications

J W Sparks, and D L Brautigan
August 1991, The Journal of biological chemistry,
J W Sparks, and D L Brautigan
October 1998, The Journal of biological chemistry,
J W Sparks, and D L Brautigan
January 2003, Proceedings of the National Academy of Sciences of the United States of America,
J W Sparks, and D L Brautigan
May 1993, Proceedings of the National Academy of Sciences of the United States of America,
J W Sparks, and D L Brautigan
April 2015, Structure (London, England : 1993),
J W Sparks, and D L Brautigan
January 1994, Advances in enzymology and related areas of molecular biology,
J W Sparks, and D L Brautigan
January 2001, Ernst Schering Research Foundation workshop,
J W Sparks, and D L Brautigan
April 2015, Structure (London, England : 1993),
J W Sparks, and D L Brautigan
November 1993, Molecular and cellular biochemistry,
Copied contents to your clipboard!