Leukotriene modulation of chloride transport in frog cornea. 1986

B E Schaeffer, and J A Zadunaisky

The present study has identified the metabolites of arachidonic acid (AA) formed by the isolated frog cornea and has shown that this tissue is capable of the biosynthesis of both lipoxygenase and cyclo-oxygenase pathway metabolites. The cyclo-oxygenase (CO) metabolites found in greatest abundance were the prostaglandins E2 and F2a (PGE2 and PGF2a). The major lipoxygenase (LO) pathway metabolite found by thin-layer chromatography (TLC) was leukotriene B4 (LTB4), whereas leukotriene C4 (LTC4) biosynthesis was detected by radioimmunoassay. These leukotrienes (LTs) are highly potent modulators of active chloride transport, since incubation with LTC4 (10(-7)-10(-9) M) resulted in a dose-dependent stimulation of both the Cl- originated short-circuit current (SCC) and potential difference (PD). In contrast, LTB4 (10(-7)-10(-9) M) inhibited both of these parameters. Both LTC4 and LTB4 exerted these effects only when applied to the endothelial side. Preincubation with the leukotriene receptor antagonist, FPL 55712 completely blocked the response to LTC4, indicating that the action of LTC4 in the cornea is receptor-mediated. In this report the authors show that LTB4 and LTC4 are formed by the cornea and that they are potent modulators of the SCC and PD in chamber experiments. The possibility exists that LTB4 and LTC4 may function as endogenous regulators of net Cl- transport in the cornea, since the addition of these metabolites resulted in a dose-dependent stimulation (with LTC4), and inhibition (with LTB4), of both the short-circuit current (SCC) and potential difference (PD).

UI MeSH Term Description Entries
D007975 Leukotriene B4 The major metabolite in neutrophil polymorphonuclear leukocytes. It stimulates polymorphonuclear cell function (degranulation, formation of oxygen-centered free radicals, arachidonic acid release, and metabolism). (From Dictionary of Prostaglandins and Related Compounds, 1990) 5,12-HETE,5,12-diHETE,LTB4,Leukotriene B,Leukotriene B-4,Leukotrienes B,5,12 HETE,5,12 diHETE,B-4, Leukotriene,Leukotriene B 4
D002712 Chlorides Inorganic compounds derived from hydrochloric acid that contain the Cl- ion. Chloride,Chloride Ion Level,Ion Level, Chloride,Level, Chloride Ion
D002867 Chromones 1,4-Benzopyrones,Chromone,1,4 Benzopyrones
D003315 Cornea The transparent anterior portion of the fibrous coat of the eye consisting of five layers: stratified squamous CORNEAL EPITHELIUM; BOWMAN MEMBRANE; CORNEAL STROMA; DESCEMET MEMBRANE; and mesenchymal CORNEAL ENDOTHELIUM. It serves as the first refracting medium of the eye. It is structurally continuous with the SCLERA, avascular, receiving its nourishment by permeation through spaces between the lamellae, and is innervated by the ophthalmic division of the TRIGEMINAL NERVE via the ciliary nerves and those of the surrounding conjunctiva which together form plexuses. (Cline et al., Dictionary of Visual Science, 4th ed) Corneas
D004537 Eicosanoic Acids 20-carbon saturated monocarboxylic acids. Arachidic Acids,Acids, Arachidic,Acids, Eicosanoic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001095 Arachidonic Acids Eicosatetraenoic Acids,Acids, Arachidonic,Acids, Eicosatetraenoic
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic
D013189 SRS-A A group of LEUKOTRIENES; (LTC4; LTD4; and LTE4) that is the major mediator of BRONCHOCONSTRICTION; HYPERSENSITIVITY; and other allergic reactions. Earlier studies described a "slow-reacting substance of ANAPHYLAXIS" released from lung by cobra venom or after anaphylactic shock. The relationship between SRS-A leukotrienes was established by UV which showed the presence of the conjugated triene. (From Merck Index, 11th ed) Slow Reacting Substance of Anaphylaxis
D016718 Arachidonic Acid An unsaturated, essential fatty acid. It is found in animal and human fat as well as in the liver, brain, and glandular organs, and is a constituent of animal phosphatides. It is formed by the synthesis from dietary linoleic acid and is a precursor in the biosynthesis of prostaglandins, thromboxanes, and leukotrienes. (all-Z)-5,8,11,14-Eicosatetraenoic acid,Arachidonic Acid, (all-Z)-Isomer, 1-(14)C-Labeled,Arachidonic Acid, (all-Z)-isomer, 3H-Labeled,Arachidonic Acid, Ammonium Salt, (all-Z)-Isomer,Arachidonic Acid, Cerium Salt, (all-Z)-Isomer,Arachidonic Acid, Cesium Salt, (all-Z)-Isomer,Arachidonic Acid, Lithium Salt, (all-Z)-Isomer,Arachidonic Acid, Potassium Salt, (all-Z)-Isomer,Arachidonic Acid, Sodium Salt,Arachidonic Acid, Sodium Salt, (all-Z)-Isomer,Arachidonic Acid, Zinc Salt, (all-Z)-Isomer,Sodium Arachidonate,Vitamin F,Arachidonate, Sodium

Related Publications

B E Schaeffer, and J A Zadunaisky
August 1966, The American journal of physiology,
B E Schaeffer, and J A Zadunaisky
September 1972, Biochimica et biophysica acta,
B E Schaeffer, and J A Zadunaisky
December 1971, The American journal of physiology,
B E Schaeffer, and J A Zadunaisky
August 1979, The American journal of physiology,
B E Schaeffer, and J A Zadunaisky
December 1983, The American journal of physiology,
B E Schaeffer, and J A Zadunaisky
August 1977, The American journal of physiology,
B E Schaeffer, and J A Zadunaisky
March 1983, The American journal of physiology,
B E Schaeffer, and J A Zadunaisky
April 1985, Current eye research,
B E Schaeffer, and J A Zadunaisky
March 1966, Nature,
B E Schaeffer, and J A Zadunaisky
March 1972, Acta physiologica Scandinavica,
Copied contents to your clipboard!