The passive electrical properties of frog skeletal muscle fibres at different sarcomere lengths. 1977

A F Dulhunty, and C Franzini-Armstrong

1. The passive electrical properties of frog skeletal muscle fibres have been measured at a number of different sarcomere lengths (from 2-1 to 4-0 micron). The geometrical outline of each fibre was determined from optical cross-sections and sarcomere length was measured by laser beam diffraction. 2. When fibres were stretched to long sarcomere lengths the membrane capacity, Cm, of both normal and detubulated (glycerol-treated) fibres was significantly less than the Cm of fibres at rest length. A significant reduction in membrane conductance of fibres held at long sarcomere lengths was only seen with detubulated fibres. 3. Membrane capacity and membrane conductance have a significant dependence on the cross-sectional area of normal fibres but are independent of cross-sectional area after detubulation. 4. It has been shown that membrane geometry depends on the sarcomere length of the fibre and it is suggested that the passive membrane properties are related to sarcomere length because they depend on membrane geometry. 5. The specific membrane capacity, calculated from the data from detubulated fibres, is 0-8 micronF/cm2. 6. The internal resistivity, Ri, of normal fibres, also depends on sarcomere length between 2-1 and 3-0 micron. At a sarcomere length of 2-1 micron the average Ri is 122 +/- 3 omega. cm (mean +/- S.E. of mean) and at a sarcomere length of 3-0 micron the average Ri is 210 +/- 17 omega. cm (mean +/- S.E. of mean). No further increase in Ri was observed with further increases in sarcomere length.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009210 Myofibrils The long cylindrical contractile organelles of STRIATED MUSCLE cells composed of ACTIN FILAMENTS; MYOSIN filaments; and other proteins organized in arrays of repeating units called SARCOMERES . Myofilaments,Myofibril,Myofilament
D011894 Rana pipiens A highly variable species of the family Ranidae in Canada, the United States and Central America. It is the most widely used Anuran in biomedical research. Frog, Leopard,Leopard Frog,Lithobates pipiens,Frogs, Leopard,Leopard Frogs
D012044 Regression Analysis Procedures for finding the mathematical function which best describes the relationship between a dependent variable and one or more independent variables. In linear regression (see LINEAR MODELS) the relationship is constrained to be a straight line and LEAST-SQUARES ANALYSIS is used to determine the best fit. In logistic regression (see LOGISTIC MODELS) the dependent variable is qualitative rather than continuously variable and LIKELIHOOD FUNCTIONS are used to find the best relationship. In multiple regression, the dependent variable is considered to depend on more than a single independent variable. Regression Diagnostics,Statistical Regression,Analysis, Regression,Analyses, Regression,Diagnostics, Regression,Regression Analyses,Regression, Statistical,Regressions, Statistical,Statistical Regressions
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical
D005990 Glycerol A trihydroxy sugar alcohol that is an intermediate in carbohydrate and lipid metabolism. It is used as a solvent, emollient, pharmaceutical agent, or sweetening agent. 1,2,3-Propanetriol,Glycerin,1,2,3-Trihydroxypropane,Glycerine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001001 Anura An order of the class Amphibia, which includes several families of frogs and toads. They are characterized by well developed hind limbs adapted for jumping, fused head and trunk and webbed toes. The term "toad" is ambiguous and is properly applied only to the family Bufonidae. Bombina,Frogs and Toads,Salientia,Toad, Fire-Bellied,Toads and Frogs,Anuras,Fire-Bellied Toad,Fire-Bellied Toads,Salientias,Toad, Fire Bellied,Toads, Fire-Bellied
D066298 In Vitro Techniques Methods to study reactions or processes taking place in an artificial environment outside the living organism. In Vitro Test,In Vitro Testing,In Vitro Tests,In Vitro as Topic,In Vitro,In Vitro Technique,In Vitro Testings,Technique, In Vitro,Techniques, In Vitro,Test, In Vitro,Testing, In Vitro,Testings, In Vitro,Tests, In Vitro,Vitro Testing, In

Related Publications

A F Dulhunty, and C Franzini-Armstrong
October 1984, The Journal of physiology,
A F Dulhunty, and C Franzini-Armstrong
February 1989, Journal of muscle research and cell motility,
A F Dulhunty, and C Franzini-Armstrong
January 1984, Advances in experimental medicine and biology,
A F Dulhunty, and C Franzini-Armstrong
October 1994, Acta physiologica Scandinavica,
A F Dulhunty, and C Franzini-Armstrong
July 1980, The Journal of physiology,
A F Dulhunty, and C Franzini-Armstrong
December 1985, Biophysical journal,
A F Dulhunty, and C Franzini-Armstrong
June 1984, Journal of muscle research and cell motility,
A F Dulhunty, and C Franzini-Armstrong
July 1979, The Journal of physiology,
A F Dulhunty, and C Franzini-Armstrong
April 1974, The Journal of general physiology,
Copied contents to your clipboard!