Platelet-activating factor (PAF) mediation of rat anaphylactic responses to soluble immune complexes. Studies with PAF receptor antagonist L-652,731. 1986

T W Doebber, and M S Wu, and T Biftu

A new synthetic compound, L-652,731 (trans-2,5-(3,4,5-trimethoxyphenyl) tetrahydrofuran), which has been demonstrated by Hwang et al. to be a potent and specific platelet-activating factor (PAF) receptor antagonist causes 100% inhibition of 1 microM PAF-induced neutrophil degranulation at 50 microM, but has no effect on neutrophil degranulation induced by precipitating immune complexes (323 micrograms/ml), fMet-Leu-Phe (10(-7) M), or the calcium ionophore A23187 (10(-5) M). Intravenous infusion of 1 mumol L-652,731 results in almost 100% inhibition of hypotension induced by PAF but not that induced by isoproterenol, histamine, bradykinin, or acetylcholine. With the use of this novel PAF receptor antagonist, the in vivo mediator role of PAF in the soluble immune complex-induced hypotension, extravasation, vascular lysosomal hydrolase secretion, and neutropenia in rats was determined. The hypotension, extravasation, and lysosomal hydrolase release induced by immune complex infusion take 2 to 10 min longer to occur than the same responses elicited by PAF infusion. The neutropenia response is immediate with both stimuli. L-652,731 when orally administered to rats (20 mg/kg, 1.5 hr before PAF infusion) inhibited PAF-induced hypotension (69%), extravasation (76%), vascular lysosomal hydrolase release (79%), and neutropenia (73%). The same L-652,731-dosing regimen inhibited immune complex-stimulated hypotension (87%), extravasation (77%), and vascular lysosomal hydrolase release (31%). The initial and complete neutropenia induced by immune complex infusion was not inhibited in L-652,731-pretreated rats, but the rate of return of neutrophils to the blood was faster in the latter rats. Rats with blocked circulation to the liver still exhibited extensive extravasation and vascular lysosomal hydrolase release in response to PAF, but there was no extravasation and greatly reduced hydrolase release in response to immune complexes. Thus PAF is indicated to be a major mediator of soluble immune complex-induced hypotension and vascular permeability and a minor mediator of immune complex-induced lysosomal hydrolase release in rats. PAF probably does not mediate the initial and complete neutropenia stimulated by immune complexes. The liver is probably the major site for PAF production in response to circulating immune complexes.

UI MeSH Term Description Entries
D007022 Hypotension Abnormally low BLOOD PRESSURE that can result in inadequate blood flow to the brain and other vital organs. Common symptom is DIZZINESS but greater negative impacts on the body occur when there is prolonged depravation of oxygen and nutrients. Blood Pressure, Low,Hypotension, Vascular,Low Blood Pressure,Vascular Hypotension
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008247 Lysosomes A class of morphologically heterogeneous cytoplasmic particles in animal and plant tissues characterized by their content of hydrolytic enzymes and the structure-linked latency of these enzymes. The intracellular functions of lysosomes depend on their lytic potential. The single unit membrane of the lysosome acts as a barrier between the enzymes enclosed in the lysosome and the external substrate. The activity of the enzymes contained in lysosomes is limited or nil unless the vesicle in which they are enclosed is ruptured or undergoes MEMBRANE FUSION. (From Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed). Autolysosome,Autolysosomes,Lysosome
D009503 Neutropenia A decrease in the number of NEUTROPHILS found in the blood. Neutropenias
D010972 Platelet Activating Factor A phospholipid derivative formed by PLATELETS; BASOPHILS; NEUTROPHILS; MONOCYTES; and MACROPHAGES. It is a potent platelet aggregating agent and inducer of systemic anaphylactic symptoms, including HYPOTENSION; THROMBOCYTOPENIA; NEUTROPENIA; and BRONCHOCONSTRICTION. AGEPC,Acetyl Glyceryl Ether Phosphorylcholine,PAF-Acether,Phosphorylcholine, Acetyl Glyceryl Ether,1-Alkyl-2-acetyl-sn-glycerophosphocholine,Platelet Aggregating Factor,Platelet Aggregation Enhancing Factor,Platelet-Activating Substance,Thrombocyte Aggregating Activity,1 Alkyl 2 acetyl sn glycerophosphocholine,Aggregating Factor, Platelet,Factor, Platelet Activating,PAF Acether,Platelet Activating Substance
D010980 Platelet Membrane Glycoproteins Surface glycoproteins on platelets which have a key role in hemostasis and thrombosis such as platelet adhesion and aggregation. Many of these are receptors. PM-GP,Platelet Glycoprotein,Platelet Membrane Glycoprotein,PM-GPs,Platelet Glycoproteins,Glycoprotein, Platelet,Glycoprotein, Platelet Membrane,Glycoproteins, Platelet,Glycoproteins, Platelet Membrane,Membrane Glycoprotein, Platelet,Membrane Glycoproteins, Platelet,PM GP
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D002199 Capillary Permeability The property of blood capillary ENDOTHELIUM that allows for the selective exchange of substances between the blood and surrounding tissues and through membranous barriers such as the BLOOD-AIR BARRIER; BLOOD-AQUEOUS BARRIER; BLOOD-BRAIN BARRIER; BLOOD-NERVE BARRIER; BLOOD-RETINAL BARRIER; and BLOOD-TESTIS BARRIER. Small lipid-soluble molecules such as carbon dioxide and oxygen move freely by diffusion. Water and water-soluble molecules cannot pass through the endothelial walls and are dependent on microscopic pores. These pores show narrow areas (TIGHT JUNCTIONS) which may limit large molecule movement. Microvascular Permeability,Permeability, Capillary,Permeability, Microvascular,Vascular Permeability,Capillary Permeabilities,Microvascular Permeabilities,Permeabilities, Capillary,Permeabilities, Microvascular,Permeabilities, Vascular,Permeability, Vascular,Vascular Permeabilities

Related Publications

T W Doebber, and M S Wu, and T Biftu
September 1987, The Journal of pharmacology and experimental therapeutics,
T W Doebber, and M S Wu, and T Biftu
January 1989, Biochemical pharmacology,
T W Doebber, and M S Wu, and T Biftu
April 2018, Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica,
T W Doebber, and M S Wu, and T Biftu
November 1996, Phytomedicine : international journal of phytotherapy and phytopharmacology,
T W Doebber, and M S Wu, and T Biftu
January 2005, Phytomedicine : international journal of phytotherapy and phytopharmacology,
T W Doebber, and M S Wu, and T Biftu
March 2002, Bioorganic & medicinal chemistry letters,
T W Doebber, and M S Wu, and T Biftu
June 1999, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
Copied contents to your clipboard!