Opioid peptide immunoreactivity in spinal and trigeminal dorsal horn neurons projecting to the parabrachial nucleus in the rat. 1986

D G Standaert, and S J Watson, and R A Houghten, and C B Saper

The parabrachial nucleus (PB) is the major relay for ascending visceral afferent information from the nucleus of the solitary tract to the forebrain. We have recently found that PB in the rat also receives a substantial afferent projection from neurons in the marginal zone of the entire length of the spinal and trigeminal dorsal horn. Immunoreactive perikarya stained with antisera against several neuropeptides--including dynorphin, enkephalins, and substance P--have been identified in the marginal zone. We therefore investigated the chemical specificity of the spinoparabrachial projection by combining fluorescent retrograde tracing with immunofluorescence for substance P, dynorphin A1-17, met-enkephalin, and two enkephalin precursor fragments (proenkephalin 192-203 and peptide E). Following PB injections of fluorescent dyes, about half of the retrogradely labeled neurons in the marginal zone stained with antisera against either dynorphin or enkephalin series peptides. Elution-restaining experiments indicated that the dynorphin- and enkephalin-immunoreactivities were contained within separate populations of marginal zone neurons. We could not identify any substance P-immunoreactive perikarya in the marginal zone, but substance P-immunoreactive fibers were seen in close apposition to retrogradely labeled, opioid-immunoreactive cell bodies and dendrites. These results indicate that the dynorphin- and enkephalin-immunoreactive perikarya in the marginal zone of the dorsal horn represent independent neuronal populations. These opioid-immunoreactive neurons, which are believed to have extensive local collateral connections, are the main source of a long ascending projection to the parabrachial nucleus in the rat. Furthermore, opioid neurons in the marginal zone may receive substance P-immunoreactive primary sensory afferents.

UI MeSH Term Description Entries
D007120 Immunochemistry Field of chemistry that pertains to immunological phenomena and the study of chemical reactions related to antigen stimulation of tissues. It includes physicochemical interactions between antigens and antibodies.
D008856 Microscopy, Fluorescence Microscopy of specimens stained with fluorescent dye (usually fluorescein isothiocyanate) or of naturally fluorescent materials, which emit light when exposed to ultraviolet or blue light. Immunofluorescence microscopy utilizes antibodies that are labeled with fluorescent dye. Fluorescence Microscopy,Immunofluorescence Microscopy,Microscopy, Immunofluorescence,Fluorescence Microscopies,Immunofluorescence Microscopies,Microscopies, Fluorescence,Microscopies, Immunofluorescence
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011149 Pons The front part of the hindbrain (RHOMBENCEPHALON) that lies between the MEDULLA and the midbrain (MESENCEPHALON) ventral to the cerebellum. It is composed of two parts, the dorsal and the ventral. The pons serves as a relay station for neural pathways between the CEREBELLUM to the CEREBRUM. Pons Varolii,Ponte,Pons Varolius,Pontes,Varolii, Pons,Varolius, Pons
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D004723 Endorphins One of the three major groups of endogenous opioid peptides. They are large peptides derived from the PRO-OPIOMELANOCORTIN precursor. The known members of this group are alpha-, beta-, and gamma-endorphin. The term endorphin is also sometimes used to refer to all opioid peptides, but the narrower sense is used here; OPIOID PEPTIDES is used for the broader group. Endorphin
D006651 Histocytochemistry Study of intracellular distribution of chemicals, reaction sites, enzymes, etc., by means of staining reactions, radioactive isotope uptake, selective metal distribution in electron microscopy, or other methods. Cytochemistry
D000578 Amidines Derivatives of oxoacids RnE(
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

D G Standaert, and S J Watson, and R A Houghten, and C B Saper
October 1985, The Journal of comparative neurology,
D G Standaert, and S J Watson, and R A Houghten, and C B Saper
September 2007, The Journal of comparative neurology,
D G Standaert, and S J Watson, and R A Houghten, and C B Saper
April 2021, Brain research bulletin,
D G Standaert, and S J Watson, and R A Houghten, and C B Saper
March 2013, Neuroscience,
D G Standaert, and S J Watson, and R A Houghten, and C B Saper
April 1999, Neuroscience letters,
D G Standaert, and S J Watson, and R A Houghten, and C B Saper
June 1997, The Journal of comparative neurology,
D G Standaert, and S J Watson, and R A Houghten, and C B Saper
January 2019, Journal of oral science,
D G Standaert, and S J Watson, and R A Houghten, and C B Saper
October 2006, The Journal of comparative neurology,
D G Standaert, and S J Watson, and R A Houghten, and C B Saper
January 1991, Neuroscience letters,
Copied contents to your clipboard!