Multiple calcium-activated neutral proteinases (CANP) in mouse retinal ganglion cell neurons: specificities for endogenous neuronal substrates and comparison to purified brain CANP. 1986

R A Nixon, and R Quackenbush, and A Vitto

Calcium-activated neutral proteinases (CANPs) and their specificities for axonally transported proteins were studied within intact axons of mouse retinal ganglion cell (RGC) neurons in vitro. Two CANP activities with markedly different properties were identified. CANP B, at endogenous calcium levels, selectively cleaved the 145,000 Da (145 kDa) neurofilament protein subunit to yield 143 and 140 kDa neurofilament proteins that are also major constituents of the axonal cytoskeleton. This process represents a posttranslational modification of the neurofilament protein subunit rather than the initial step in its degradation (Nixon et al., 1982, 1983). A second calcium-activated neutral proteinase activity, CANP A, appeared only when calcium levels in the incubating medium were 100 microM or higher. CANP A degraded most proteins in RGC axons but acted considerably more rapidly on high-molecular-weight species. In particular, a 290-320 kDa protein in the Group IV (SCb) phase of axoplasmic transport was degraded 3 X faster than other major axonal proteins, including neurofilament proteins and fodrin. When maximally expressed, CANP A activity represented an enormous proteolytic potential in RGC axons--more than 50% of the total axonal content of proteins larger than 60 kDa could be hydrolyzed within 5 min. The calcium requirements, inhibitor profile, and substrate specificity of CANP A were similar to those of mCANP, the major CANP of mouse brain purified to homogeneity, suggesting that these enzymes may be the same or highly related proteins. The existence in a single neuron type of two CANP activities with markedly different substrate specificities and enzymatic properties emphasizes the possible functional diversity of calcium-activated neutral proteinases in neurons. These functions include the posttranslational modification, as well as degradation of neuronal proteins.

UI MeSH Term Description Entries
D008297 Male Males
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009419 Nerve Tissue Proteins Proteins, Nerve Tissue,Tissue Proteins, Nerve
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010447 Peptide Hydrolases Hydrolases that specifically cleave the peptide bonds found in PROTEINS and PEPTIDES. Examples of sub-subclasses for this group include EXOPEPTIDASES and ENDOPEPTIDASES. Peptidase,Peptidases,Peptide Hydrolase,Protease,Proteases,Proteinase,Proteinases,Proteolytic Enzyme,Proteolytic Enzymes,Esteroproteases,Enzyme, Proteolytic,Hydrolase, Peptide
D012160 Retina The ten-layered nervous tissue membrane of the eye. It is continuous with the OPTIC NERVE and receives images of external objects and transmits visual impulses to the brain. Its outer surface is in contact with the CHOROID and the inner surface with the VITREOUS BODY. The outer-most layer is pigmented, whereas the inner nine layers are transparent. Ora Serrata
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002154 Calpain Cysteine proteinase found in many tissues. Hydrolyzes a variety of endogenous proteins including NEUROPEPTIDES; CYTOSKELETAL PROTEINS; proteins from SMOOTH MUSCLE; CARDIAC MUSCLE; liver; platelets; and erythrocytes. Two subclasses having high and low calcium sensitivity are known. Removes Z-discs and M-lines from myofibrils. Activates phosphorylase kinase and cyclic nucleotide-independent protein kinase. This enzyme was formerly listed as EC 3.4.22.4. Calcium-Activated Neutral Protease,Calcium-Dependent Neutral Proteinase,Ca2+-Activated Protease,Calcium-Activated Neutral Proteinase,Calcium-Activated Protease,Calcium-Dependent Neutral Protease,Calpain I,Calpain II,Desminase,Ca2+ Activated Protease,Calcium Activated Neutral Protease,Calcium Activated Neutral Proteinase,Calcium Activated Protease,Calcium Dependent Neutral Protease,Calcium Dependent Neutral Proteinase,Neutral Protease, Calcium-Activated,Neutral Protease, Calcium-Dependent,Neutral Proteinase, Calcium-Activated,Neutral Proteinase, Calcium-Dependent,Protease, Ca2+-Activated,Protease, Calcium-Activated,Protease, Calcium-Activated Neutral,Protease, Calcium-Dependent Neutral,Proteinase, Calcium-Activated Neutral,Proteinase, Calcium-Dependent Neutral

Related Publications

R A Nixon, and R Quackenbush, and A Vitto
May 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience,
R A Nixon, and R Quackenbush, and A Vitto
December 1990, The Journal of comparative neurology,
R A Nixon, and R Quackenbush, and A Vitto
January 1984, Progress in neurobiology,
R A Nixon, and R Quackenbush, and A Vitto
February 1988, Neurochemical research,
R A Nixon, and R Quackenbush, and A Vitto
November 1986, Clinica chimica acta; international journal of clinical chemistry,
R A Nixon, and R Quackenbush, and A Vitto
February 1993, Neurochemical research,
R A Nixon, and R Quackenbush, and A Vitto
February 2011, [Zhonghua yan ke za zhi] Chinese journal of ophthalmology,
R A Nixon, and R Quackenbush, and A Vitto
April 1990, Biochimica et biophysica acta,
Copied contents to your clipboard!