Multiscale Imaging Reveals the Hierarchical Organization of Fibrillin Microfibrils. 2018

Alan R F Godwin, and Tobias Starborg, and David J Smith, and Michael J Sherratt, and Alan M Roseman, and Clair Baldock
Wellcome Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK; Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK.

Fibrillin microfibrils are evolutionarily ancient, structurally complex extracellular polymers found in mammalian elastic tissues where they endow elastic properties, sequester growth factors and mediate cell signalling; thus, knowledge of their structure and organization is essential for a more complete understanding of cell function and tissue morphogenesis. By combining multiple imaging techniques, we visualize three levels of hierarchical organization of fibrillin structure ranging from micro-scale fiber bundles in the ciliary zonule to nano-scale individual microfibrils. Serial block-face scanning electron microscopy imaging suggests that bundles of zonule fibers are bound together by circumferential wrapping fibers, which is mirrored on a shorter-length scale where individual zonule fibers are interwoven by smaller fibers. Electron tomography shows that microfibril directionality varies from highly aligned and parallel, connecting to the basement membrane, to a meshwork at the zonule fiber periphery, and microfibrils within the zonule are connected by short cross-bridges, potentially formed by fibrillin-binding proteins. Three-dimensional reconstructions of negative-stain electron microscopy images of purified microfibrils confirm that fibrillin microfibrils have hollow tubular structures with defined bead and interbead regions, similar to tissue microfibrils imaged in our tomograms. These microfibrils are highly symmetrical, with an outer ring and interwoven core in the bead and four linear prongs, each accommodating a fibrillin dimer, in the interbead region. Together these data show how a single molecular building block is organized into different levels of hierarchy from microfibrils to tissue structures spanning nano- to macro-length scales. Furthermore, the application of these combined imaging approaches has wide applicability to other tissue systems.

UI MeSH Term Description Entries
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D008968 Molecular Conformation The characteristic three-dimensional shape of a molecule. Molecular Configuration,3D Molecular Structure,Configuration, Molecular,Molecular Structure, Three Dimensional,Three Dimensional Molecular Structure,3D Molecular Structures,Configurations, Molecular,Conformation, Molecular,Conformations, Molecular,Molecular Configurations,Molecular Conformations,Molecular Structure, 3D,Molecular Structures, 3D,Structure, 3D Molecular,Structures, 3D Molecular
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D000071837 Fibrillins A family of extracellular matrix glycoproteins that is structurally similar to LATENT TGF-BETA BINDING PROTEINS, but contain additional TGF-beta binding domains, in addition to unique domains at their N and C-terminals. Fibrillins assemble into 10-12 nm MICROFIBRILS that function in a variety of cell interactions with the EXTRACELLULAR MATRIX and developmental processes such as ELASTIC TISSUE maintenance and assembly, and the targeting of growth factors to the extracellular matrix. Fibrillin
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001485 Basement Membrane A darkly stained mat-like EXTRACELLULAR MATRIX (ECM) that separates cell layers, such as EPITHELIUM from ENDOTHELIUM or a layer of CONNECTIVE TISSUE. The ECM layer that supports an overlying EPITHELIUM or ENDOTHELIUM is called basal lamina. Basement membrane (BM) can be formed by the fusion of either two adjacent basal laminae or a basal lamina with an adjacent reticular lamina of connective tissue. BM, composed mainly of TYPE IV COLLAGEN; glycoprotein LAMININ; and PROTEOGLYCAN, provides barriers as well as channels between interacting cell layers. Basal Lamina,Basement Lamina,Lamina Densa,Lamina Lucida,Lamina Reticularis,Basement Membranes,Densas, Lamina,Lamina, Basal,Lamina, Basement,Lucida, Lamina,Membrane, Basement,Membranes, Basement,Reticularis, Lamina
D055032 Electron Microscope Tomography A tomographic technique for obtaining 3-dimensional images with transmission electron microscopy. Electron Tomography,Tomography, Electron,Tomography, Electron Microscope,EM Tomography,Electron Microtomography,STEM Tomography,Scanning Transmission Electron Microscopy Tomography,TEM Tomography,Transmission Electron Microscopy Tomography,Transmission Electron Microtomography,Electron Microtomography, Transmission,Microscope Tomography, Electron,Microtomography, Electron,Microtomography, Transmission Electron,Tomography, EM,Tomography, STEM,Tomography, TEM
D020894 Microfibrils Components of the extracellular matrix consisting primarily of fibrillin. They are essential for the integrity of elastic fibers. Microfibril

Related Publications

Alan R F Godwin, and Tobias Starborg, and David J Smith, and Michael J Sherratt, and Alan M Roseman, and Clair Baldock
March 2001, The Journal of cell biology,
Alan R F Godwin, and Tobias Starborg, and David J Smith, and Michael J Sherratt, and Alan M Roseman, and Clair Baldock
May 1998, The Journal of cell biology,
Alan R F Godwin, and Tobias Starborg, and David J Smith, and Michael J Sherratt, and Alan M Roseman, and Clair Baldock
January 2005, Advances in protein chemistry,
Alan R F Godwin, and Tobias Starborg, and David J Smith, and Michael J Sherratt, and Alan M Roseman, and Clair Baldock
April 1996, Journal of molecular biology,
Alan R F Godwin, and Tobias Starborg, and David J Smith, and Michael J Sherratt, and Alan M Roseman, and Clair Baldock
December 1993, FEBS letters,
Alan R F Godwin, and Tobias Starborg, and David J Smith, and Michael J Sherratt, and Alan M Roseman, and Clair Baldock
January 1994, Methods in enzymology,
Alan R F Godwin, and Tobias Starborg, and David J Smith, and Michael J Sherratt, and Alan M Roseman, and Clair Baldock
July 1997, The British journal of dermatology,
Alan R F Godwin, and Tobias Starborg, and David J Smith, and Michael J Sherratt, and Alan M Roseman, and Clair Baldock
January 2016, Matrix biology : journal of the International Society for Matrix Biology,
Alan R F Godwin, and Tobias Starborg, and David J Smith, and Michael J Sherratt, and Alan M Roseman, and Clair Baldock
December 2019, International journal of molecular sciences,
Alan R F Godwin, and Tobias Starborg, and David J Smith, and Michael J Sherratt, and Alan M Roseman, and Clair Baldock
January 2006, Proteomics,
Copied contents to your clipboard!