Combined pituitary function-test with four hypothalamic releasing hormones. 1986

J Schopohl, and M Losa, and A König, and O A Müller, and G K Stalla, and K von Werder

Anterior pituitary function was investigated in ten healthy subjects by administering a combination of 200 micrograms thyrotropin releasing hormone (TRH), 100 micrograms gonadotropin releasing hormone (GnRH), 100 micrograms growth hormone releasing factor (GRF1-44), and 100 micrograms human corticotropin releasing factor (CRF). The same test protocol was performed in all subjects after pretreatment with 0.25 mg terguride. Five subjects were tested only with TRH and GnRH, five only with CRF, and six only with GRF. There was a prompt increase in all hormones after the administration of the four releasing hormones (RH). Pretreatment with terguride lowered the prolactin (PRL) increase (p less than 0.01) as well as the thyrotropin (TSH) peak (p less than 0.05) compared with the test without dopamine agonist pretreatment. The PRL levels after combined RH administration were significantly higher than after TRH and GnRH alone. Although four of the five subjects had higher TSH levels after combined RH administration than after TRH and GnRH alone, the difference was not significant. Other hormones were not significantly influenced by the combined RH administration or dopamine agonist pretreatment. Despite the fact that the interaction of the different releasing hormones and dopamine agonists influences the pituitary hormone response, combined RH administration seems to be a useful test for evaluating pituitary function also in patients receiving dopamine agonist therapy.

UI MeSH Term Description Entries
D007986 Luteinizing Hormone A major gonadotropin secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Luteinizing hormone regulates steroid production by the interstitial cells of the TESTIS and the OVARY. The preovulatory LUTEINIZING HORMONE surge in females induces OVULATION, and subsequent LUTEINIZATION of the follicle. LUTEINIZING HORMONE consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is common in the three pituitary glycoprotein hormones (TSH, LH and FSH), but the beta subunit is unique and confers its biological specificity. ICSH (Interstitial Cell Stimulating Hormone),Interstitial Cell-Stimulating Hormone,LH (Luteinizing Hormone),Lutropin,Luteoziman,Luteozyman,Hormone, Interstitial Cell-Stimulating,Hormone, Luteinizing,Interstitial Cell Stimulating Hormone
D008090 Lisuride An ergot derivative that acts as an agonist at dopamine D2 receptors (DOPAMINE AGONISTS). It may also act as an antagonist at dopamine D1 receptors, and as an agonist at some serotonin receptors (SEROTONIN RECEPTOR AGONISTS). Lysuride Hydrogen Maleate,Methylergol Carbamide,Arolac,Cuvalit,Dopergin,Dopergine,Lisuride Hydrochloride,Lisuride Maleate,Lisuride Maleate (1:1),Lisuride Maleate, (8beta)-Isomer,Lisuride Mesylate,Lisuride Phosphate (1:1),Lisuride, (8alpha)-(+-)-Isomer,Lysenyl,Lysurid,Revanil,Carbamide, Methylergol,Hydrochloride, Lisuride,Hydrogen Maleate, Lysuride,Maleate, Lisuride,Mesylate, Lisuride
D008297 Male Males
D010901 Pituitary Function Tests Examinations that evaluate functions of the pituitary gland. Pituitary Gland Function Tests,Function Test, Pituitary,Function Tests, Pituitary,Pituitary Function Test,Test, Pituitary Function,Tests, Pituitary Function
D010903 Pituitary Gland, Anterior The anterior glandular lobe of the pituitary gland, also known as the adenohypophysis. It secretes the ADENOHYPOPHYSEAL HORMONES that regulate vital functions such as GROWTH; METABOLISM; and REPRODUCTION. Adenohypophysis,Anterior Lobe of Pituitary,Anterior Pituitary Gland,Lobus Anterior,Pars Distalis of Pituitary,Adenohypophyses,Anterior Pituitary Glands,Anterior, Lobus,Anteriors, Lobus,Lobus Anteriors,Pituitary Anterior Lobe,Pituitary Glands, Anterior,Pituitary Pars Distalis
D010906 Pituitary Hormone-Releasing Hormones Peptides, natural or synthetic, that stimulate the release of PITUITARY HORMONES. They were first isolated from the extracts of the HYPOTHALAMUS; MEDIAN EMINENCE; PITUITARY STALK; and NEUROHYPOPHYSIS. In addition, some hypophysiotropic hormones control pituitary cell differentiation, cell proliferation, and hormone synthesis. Some can act on more than one pituitary hormone. Hormones, Pituitary Hormone Releasing,Hypophysiotropic Hormones,Hypothalamic Hypophysiotropic Hormone,Hypothalamic Releasing Factor,Hypothalamic Releasing Hormone,Hypothalamic Releasing Hormones,Hormone, Hypothalamic Hypophysiotropic,Hormones, Hypophysiotropic,Hypophysiotropic Hormone, Hypothalamic,Pituitary Hormone Releasing Hormones,Releasing Hormone, Hypothalamic
D011292 Premedication Preliminary administration of a drug preceding a diagnostic, therapeutic, or surgical procedure. The commonest types of premedication are antibiotics (ANTIBIOTIC PROPHYLAXIS) and anti-anxiety agents. It does not include PREANESTHETIC MEDICATION. Premedications
D011388 Prolactin A lactogenic hormone secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). It is a polypeptide of approximately 23 kD. Besides its major action on lactation, in some species prolactin exerts effects on reproduction, maternal behavior, fat metabolism, immunomodulation and osmoregulation. Prolactin receptors are present in the mammary gland, hypothalamus, liver, ovary, testis, and prostate. Lactogenic Hormone, Pituitary,Mammotropic Hormone, Pituitary,Mammotropin,PRL (Prolactin),Hormone, Pituitary Lactogenic,Hormone, Pituitary Mammotropic,Pituitary Lactogenic Hormone,Pituitary Mammotropic Hormone
D011863 Radioimmunoassay Classic quantitative assay for detection of antigen-antibody reactions using a radioactively labeled substance (radioligand) either directly or indirectly to measure the binding of the unlabeled substance to a specific antibody or other receptor system. Non-immunogenic substances (e.g., haptens) can be measured if coupled to larger carrier proteins (e.g., bovine gamma-globulin or human serum albumin) capable of inducing antibody formation. Radioimmunoassays
D003346 Corticotropin-Releasing Hormone A peptide of about 41 amino acids that stimulates the release of ADRENOCORTICOTROPIC HORMONE. CRH is synthesized by neurons in the PARAVENTRICULAR NUCLEUS of the HYPOTHALAMUS. After being released into the pituitary portal circulation, CRH stimulates the release of ACTH from the PITUITARY GLAND. CRH can also be synthesized in other tissues, such as PLACENTA; ADRENAL MEDULLA; and TESTIS. ACTH-Releasing Hormone,CRF-41,Corticotropin-Releasing Factor,Corticotropin-Releasing Hormone-41,ACTH-Releasing Factor,CRF (ACTH),Corticoliberin,Corticotropin-Releasing Factor-41,ACTH Releasing Factor,ACTH Releasing Hormone,Corticotropin Releasing Factor,Corticotropin Releasing Factor 41,Corticotropin Releasing Hormone,Corticotropin Releasing Hormone 41

Related Publications

J Schopohl, and M Losa, and A König, and O A Müller, and G K Stalla, and K von Werder
April 1985, The Journal of clinical endocrinology and metabolism,
J Schopohl, and M Losa, and A König, and O A Müller, and G K Stalla, and K von Werder
March 1988, Journal of endocrinological investigation,
J Schopohl, and M Losa, and A König, and O A Müller, and G K Stalla, and K von Werder
March 1996, Domestic animal endocrinology,
J Schopohl, and M Losa, and A König, and O A Müller, and G K Stalla, and K von Werder
March 1975, Nihon rinsho. Japanese journal of clinical medicine,
J Schopohl, and M Losa, and A König, and O A Müller, and G K Stalla, and K von Werder
January 1989, Taiwan yi xue hui za zhi. Journal of the Formosan Medical Association,
J Schopohl, and M Losa, and A König, and O A Müller, and G K Stalla, and K von Werder
October 1964, Metabolism: clinical and experimental,
J Schopohl, and M Losa, and A König, and O A Müller, and G K Stalla, and K von Werder
January 1964, Recent progress in hormone research,
J Schopohl, and M Losa, and A König, and O A Müller, and G K Stalla, and K von Werder
May 1986, The Journal of clinical endocrinology and metabolism,
J Schopohl, and M Losa, and A König, and O A Müller, and G K Stalla, and K von Werder
June 1985, Deutsche medizinische Wochenschrift (1946),
J Schopohl, and M Losa, and A König, and O A Müller, and G K Stalla, and K von Werder
May 1986, British medical journal (Clinical research ed.),
Copied contents to your clipboard!