Review of Biguanide (Metformin) Toxicity. 2019

George Sam Wang, and Christopher Hoyte
University of Colorado Anschutz Medical Campus, Aurora, CO, USA.

In the 1920s, guanidine, the active component of Galega officinalis, was shown to lower glucose levels and used to synthesize several antidiabetic compounds. Metformin (1,1 dimethylbiguanide) is the most well-known and currently the only marketed biguanide in the United States, United Kingdom, Canada, and Australia for the treatment of non-insulin-dependent diabetes mellitus. Although phenformin was removed from the US market in the 1970s, it is still available around the world and can be found in unregulated herbal supplements. Adverse events associated with therapeutic use of biguanides include gastrointestinal upset, vitamin B12 deficiency, and hemolytic anemia. Although the incidence is low, metformin toxicity can lead to hyperlactatemia and metabolic acidosis. Since metformin is predominantly eliminated from the body by the kidneys, toxicity can occur when metformin accumulates due to poor clearance from renal insufficiency or in the overdose setting. The dominant source of metabolic acidosis associated with hyperlactatemia in metformin toxicity is the rapid cytosolic adenosine triphosphate (ATP) turnover when complex I is inhibited and oxidative phosphorylation cannot adequately recycle the vast quantity of H+ from ATP hydrolysis. Although metabolic acidosis and hyperlactatemia are markers of metformin toxicity, the degree of hyperlactatemia and severity of acidemia have not been shown to be of prognostic value. Regardless of the etiology of toxicity, treatment should include supportive care and consideration for adjunct therapies such as gastrointestinal decontamination, glucose and insulin, alkalinization, extracorporeal techniques to reduce metformin body burden, and metabolic rescue.

UI MeSH Term Description Entries
D007004 Hypoglycemic Agents Substances which lower blood glucose levels. Antidiabetic,Antidiabetic Agent,Antidiabetic Drug,Antidiabetics,Antihyperglycemic,Antihyperglycemic Agent,Hypoglycemic,Hypoglycemic Agent,Hypoglycemic Drug,Antidiabetic Agents,Antidiabetic Drugs,Antihyperglycemic Agents,Antihyperglycemics,Hypoglycemic Drugs,Hypoglycemic Effect,Hypoglycemic Effects,Hypoglycemics,Agent, Antidiabetic,Agent, Antihyperglycemic,Agent, Hypoglycemic,Agents, Antidiabetic,Agents, Antihyperglycemic,Agents, Hypoglycemic,Drug, Antidiabetic,Drug, Hypoglycemic,Drugs, Antidiabetic,Drugs, Hypoglycemic,Effect, Hypoglycemic,Effects, Hypoglycemic
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D008687 Metformin A biguanide hypoglycemic agent used in the treatment of non-insulin-dependent diabetes mellitus not responding to dietary modification. Metformin improves glycemic control by improving insulin sensitivity and decreasing intestinal absorption of glucose. (From Martindale, The Extra Pharmacopoeia, 30th ed, p289) Dimethylguanylguanidine,Dimethylbiguanidine,Glucophage,Metformin HCl,Metformin Hydrochloride,HCl, Metformin,Hydrochloride, Metformin
D003924 Diabetes Mellitus, Type 2 A subclass of DIABETES MELLITUS that is not INSULIN-responsive or dependent (NIDDM). It is characterized initially by INSULIN RESISTANCE and HYPERINSULINEMIA; and eventually by GLUCOSE INTOLERANCE; HYPERGLYCEMIA; and overt diabetes. Type II diabetes mellitus is no longer considered a disease exclusively found in adults. Patients seldom develop KETOSIS but often exhibit OBESITY. Diabetes Mellitus, Adult-Onset,Diabetes Mellitus, Ketosis-Resistant,Diabetes Mellitus, Maturity-Onset,Diabetes Mellitus, Non-Insulin-Dependent,Diabetes Mellitus, Slow-Onset,Diabetes Mellitus, Stable,MODY,Maturity-Onset Diabetes Mellitus,NIDDM,Diabetes Mellitus, Non Insulin Dependent,Diabetes Mellitus, Noninsulin Dependent,Diabetes Mellitus, Noninsulin-Dependent,Diabetes Mellitus, Type II,Maturity-Onset Diabetes,Noninsulin-Dependent Diabetes Mellitus,Type 2 Diabetes,Type 2 Diabetes Mellitus,Adult-Onset Diabetes Mellitus,Diabetes Mellitus, Adult Onset,Diabetes Mellitus, Ketosis Resistant,Diabetes Mellitus, Maturity Onset,Diabetes Mellitus, Slow Onset,Diabetes, Maturity-Onset,Diabetes, Type 2,Ketosis-Resistant Diabetes Mellitus,Maturity Onset Diabetes,Maturity Onset Diabetes Mellitus,Non-Insulin-Dependent Diabetes Mellitus,Noninsulin Dependent Diabetes Mellitus,Slow-Onset Diabetes Mellitus,Stable Diabetes Mellitus
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000138 Acidosis A pathologic condition of acid accumulation or depletion of base in the body. The two main types are RESPIRATORY ACIDOSIS and metabolic acidosis, due to metabolic acid build up. Metabolic Acidosis,Acidoses,Acidoses, Metabolic,Acidosis, Metabolic,Metabolic Acidoses
D001645 Biguanides Derivatives of biguanide (the structure formula HN(C(NH)NH2)2) that are primarily used as oral HYPOGLYCEMIC AGENTS for the treatment of DIABETES MELLITUS, TYPE 2 and PREDIABETES. Biguanide
D051437 Renal Insufficiency Conditions in which the KIDNEYS perform below the normal level in the ability to remove wastes, concentrate URINE, and maintain ELECTROLYTE BALANCE; BLOOD PRESSURE; and CALCIUM metabolism. Renal insufficiency can be classified by the degree of kidney damage (as measured by the level of PROTEINURIA) and reduction in GLOMERULAR FILTRATION RATE. Kidney Insufficiency,Kidney Failure,Renal Failure,Failure, Kidney,Failure, Renal,Failures, Kidney,Failures, Renal,Insufficiency, Kidney,Kidney Failures,Kidney Insufficiencies,Renal Failures,Renal Insufficiencies
D065906 Hyperlactatemia Increase in blood LACTATE concentration often associated with SEPTIC SHOCK; LUNG INJURY; SEPSIS; and DRUG TOXICITY. When hyperlactatemia is associated with low body pH (acidosis) it is LACTIC ACIDOSIS. Hyperlactatemias

Related Publications

George Sam Wang, and Christopher Hoyte
January 1995, The Diabetes educator,
George Sam Wang, and Christopher Hoyte
January 1996, Clinical therapeutics,
George Sam Wang, and Christopher Hoyte
January 2012, Genetics and molecular biology,
George Sam Wang, and Christopher Hoyte
September 2014, Neuroscience letters,
George Sam Wang, and Christopher Hoyte
September 1983, MMW, Munchener medizinische Wochenschrift,
George Sam Wang, and Christopher Hoyte
December 2009, European journal of emergency medicine : official journal of the European Society for Emergency Medicine,
George Sam Wang, and Christopher Hoyte
January 1994, Pharmacological research,
George Sam Wang, and Christopher Hoyte
January 2015, Pigment cell & melanoma research,
George Sam Wang, and Christopher Hoyte
November 2015, Molecular therapy. Nucleic acids,
Copied contents to your clipboard!