[Regulation of acinar cell receptors of the pancreas by peptides]. 1986

J Mössner, and W Fischbach

Peptides may act on the same receptor they regulate or on another receptor by causing regulations via receptor interactions. These receptor regulations include changes of receptor affinity and capacity. Receptor capacity is regulated by internalization, recycling, degradation, synthesis, and modification of bioavailability without migration of the receptor. Examples for those regulations, mostly based on experiments with isolated pancreatic acini from the rat, mouse, or guinea pig, are given. For the CCK receptor these examples include complex regulations of this receptor by CCK itself, bringing into discussion the hypothesis of negative cooperativity and the two-site receptor model, desensitization of the receptor by CCK, in vivo CCK influences on its receptor, and insulin receptor/CCK receptor interactions. For the insulin receptor the physiological significance of "up and down regulation" of this receptor by insulin itself is discussed. For the IGF receptors and the EGF receptor CCK-induced, Ca2+-mediated regulation of receptor internalization are another type of regulation with unknown physiological and pathophysiological significance. Finally CCK-induced, Ca2+-mediated regulation of somatostatin receptor capacity and affinity are mentioned. It is postulated that those regulations play an important role in influencing the biological effect of hormones and that knowledge about them may improve our understanding of pathophysiology.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D010179 Pancreas A nodular organ in the ABDOMEN that contains a mixture of ENDOCRINE GLANDS and EXOCRINE GLANDS. The small endocrine portion consists of the ISLETS OF LANGERHANS secreting a number of hormones into the blood stream. The large exocrine portion (EXOCRINE PANCREAS) is a compound acinar gland that secretes several digestive enzymes into the pancreatic ductal system that empties into the DUODENUM.
D010187 Pancreatic Hormones Peptide hormones secreted into the blood by cells in the ISLETS OF LANGERHANS of the pancreas. The alpha cells secrete glucagon; the beta cells secrete insulin; the delta cells secrete somatostatin; and the PP cells secrete pancreatic polypeptide. Hormones, Pancreatic
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D011869 Radioligand Assay Quantitative determination of receptor (binding) proteins in body fluids or tissue using radioactively labeled binding reagents (e.g., antibodies, intracellular receptors, plasma binders). Protein-Binding Radioassay,Radioreceptor Assay,Assay, Radioligand,Assay, Radioreceptor,Assays, Radioligand,Assays, Radioreceptor,Protein Binding Radioassay,Protein-Binding Radioassays,Radioassay, Protein-Binding,Radioassays, Protein-Binding,Radioligand Assays,Radioreceptor Assays
D011949 Receptors, Cholecystokinin Cell surface proteins that bind cholecystokinin (CCK) with high affinity and trigger intracellular changes influencing the behavior of cells. Cholecystokinin receptors are activated by GASTRIN as well as by CCK-4; CCK-8; and CCK-33. Activation of these receptors evokes secretion of AMYLASE by pancreatic acinar cells, acid and PEPSIN by stomach mucosal cells, and contraction of the PYLORUS and GALLBLADDER. The role of the widespread CCK receptors in the central nervous system is not well understood. CCK Receptors,Caerulein Receptors,Cholecystokinin Octapeptide Receptors,Cholecystokinin Receptors,Pancreozymin Receptors,Receptors, CCK,Receptors, Caerulein,Receptors, Pancreozymin,Receptors, Sincalide,Sincalide Receptors,CCK Receptor,CCK-4 Receptors,CCK-8 Receptors,Cholecystokinin Receptor,Receptors, CCK-4,Receptors, CCK-8,Receptors, Cholecystokinin Octapeptide,CCK 4 Receptors,CCK 8 Receptors,Octapeptide Receptors, Cholecystokinin,Receptor, CCK,Receptor, Cholecystokinin,Receptors, CCK 4,Receptors, CCK 8
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D011972 Receptor, Insulin A cell surface receptor for INSULIN. It comprises a tetramer of two alpha and two beta subunits which are derived from cleavage of a single precursor protein. The receptor contains an intrinsic TYROSINE KINASE domain that is located within the beta subunit. Activation of the receptor by INSULIN results in numerous metabolic changes including increased uptake of GLUCOSE into the liver, muscle, and ADIPOSE TISSUE. Insulin Receptor,Insulin Receptor Protein-Tyrosine Kinase,Insulin Receptor alpha Subunit,Insulin Receptor beta Subunit,Insulin Receptor alpha Chain,Insulin Receptor beta Chain,Insulin-Dependent Tyrosine Protein Kinase,Receptors, Insulin,Insulin Receptor Protein Tyrosine Kinase,Insulin Receptors
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002766 Cholecystokinin A peptide, of about 33 amino acids, secreted by the upper INTESTINAL MUCOSA and also found in the central nervous system. It causes gallbladder contraction, release of pancreatic exocrine (or digestive) enzymes, and affects other gastrointestinal functions. Cholecystokinin may be the mediator of satiety. Pancreozymin,CCK-33,Cholecystokinin 33,Uropancreozymin

Related Publications

J Mössner, and W Fischbach
September 2010, Current opinion in gastroenterology,
J Mössner, and W Fischbach
August 1984, The American journal of physiology,
J Mössner, and W Fischbach
August 1986, British journal of cancer,
J Mössner, and W Fischbach
August 2001, Archives of pathology & laboratory medicine,
J Mössner, and W Fischbach
January 2003, International journal of gastrointestinal cancer,
J Mössner, and W Fischbach
November 1987, Cancer,
J Mössner, and W Fischbach
January 2000, Ultrastructural pathology,
J Mössner, and W Fischbach
January 2017, Case reports in gastroenterology,
J Mössner, and W Fischbach
January 1983, Zentralblatt fur allgemeine Pathologie u. pathologische Anatomie,
J Mössner, and W Fischbach
January 1991, Ultrastructural pathology,
Copied contents to your clipboard!