Neuron-specific gamma-enolase derived from human glioma. 1986

M Kuramitsu, and H Sawa, and I Takeshita, and T Iwaki, and K Kato

Neuron-specific gamma-enolase in human neurogenic tumors, including gliomas, transplanted gliomas, and permanent human glioma cell lines, was studied quantitatively, using newly established enzyme immunoassay methods, together with immunostaining of the tissue and cell preparations. A significantly high level of gamma-enolase was found in some glioblastomas, astrocytomas and oligodendrogliomas as well as medulloblastomas. Glioblastomas transplanted into mice and cultured cell lines derived from the same origins, as well as the permanent human glioma cell lines, also contained gamma-enolase, although the contents were low compared with findings in the original tumor tissues. Immunohistochemically, gamma-enolase stained intensely in the glioblastomatous cells. Serum gamma-enolase concentrations in some patients with gliomas and those of all the transplanted mice were enhanced. The serum gamma-enolase levels in the mice correlated well with size of the transplanted tumor tissues. These results indicate that neuron-specific gamma-enolase is produced in some neurogenic tumors of nonneuronal origin, therefore, serum gamma-enolase may be a useful biomarker for monitoring the extent of disease in patients with gliomas.

UI MeSH Term Description Entries
D008819 Mice, Nude Mutant mice homozygous for the recessive gene "nude" which fail to develop a thymus. They are useful in tumor studies and studies on immune responses. Athymic Mice,Mice, Athymic,Nude Mice,Mouse, Athymic,Mouse, Nude,Athymic Mouse,Nude Mouse
D009368 Neoplasm Transplantation Experimental transplantation of neoplasms in laboratory animals for research purposes. Transplantation, Neoplasm,Neoplasm Transplantations,Transplantations, Neoplasm
D010751 Phosphopyruvate Hydratase A hydro-lyase that catalyzes the dehydration of 2-phosphoglycerate to form PHOSPHOENOLPYRUVATE. Several different isoforms of this enzyme exist, each with its own tissue specificity. Enolase,Neuron-Specific Enolase,2-Phospho-D-Glycerate Hydro-Lyase,2-Phospho-D-Glycerate Hydrolase,2-Phosphoglycerate Dehydratase,Enolase 2,Enolase 3,Muscle-Specific Enolase,Nervous System-Specific Enolase,Non-Neuronal Enolase,alpha-Enolase,beta-Enolase,gamma-Enolase,2 Phospho D Glycerate Hydro Lyase,2 Phospho D Glycerate Hydrolase,2 Phosphoglycerate Dehydratase,Dehydratase, 2-Phosphoglycerate,Enolase, Muscle-Specific,Enolase, Nervous System-Specific,Enolase, Neuron-Specific,Enolase, Non-Neuronal,Hydratase, Phosphopyruvate,Hydro-Lyase, 2-Phospho-D-Glycerate,Muscle Specific Enolase,Nervous System Specific Enolase,Neuron Specific Enolase,Non Neuronal Enolase,System-Specific Enolase, Nervous,alpha Enolase,beta Enolase,gamma Enolase
D001932 Brain Neoplasms Neoplasms of the intracranial components of the central nervous system, including the cerebral hemispheres, basal ganglia, hypothalamus, thalamus, brain stem, and cerebellum. Brain neoplasms are subdivided into primary (originating from brain tissue) and secondary (i.e., metastatic) forms. Primary neoplasms are subdivided into benign and malignant forms. In general, brain tumors may also be classified by age of onset, histologic type, or presenting location in the brain. Brain Cancer,Brain Metastases,Brain Tumors,Cancer of Brain,Malignant Primary Brain Tumors,Neoplasms, Intracranial,Benign Neoplasms, Brain,Brain Neoplasm, Primary,Brain Neoplasms, Benign,Brain Neoplasms, Malignant,Brain Neoplasms, Malignant, Primary,Brain Neoplasms, Primary Malignant,Brain Tumor, Primary,Brain Tumor, Recurrent,Cancer of the Brain,Intracranial Neoplasms,Malignant Neoplasms, Brain,Malignant Primary Brain Neoplasms,Neoplasms, Brain,Neoplasms, Brain, Benign,Neoplasms, Brain, Malignant,Neoplasms, Brain, Primary,Primary Brain Neoplasms,Primary Malignant Brain Neoplasms,Primary Malignant Brain Tumors,Benign Brain Neoplasm,Benign Brain Neoplasms,Benign Neoplasm, Brain,Brain Benign Neoplasm,Brain Benign Neoplasms,Brain Cancers,Brain Malignant Neoplasm,Brain Malignant Neoplasms,Brain Metastase,Brain Neoplasm,Brain Neoplasm, Benign,Brain Neoplasm, Malignant,Brain Neoplasms, Primary,Brain Tumor,Brain Tumors, Recurrent,Cancer, Brain,Intracranial Neoplasm,Malignant Brain Neoplasm,Malignant Brain Neoplasms,Malignant Neoplasm, Brain,Neoplasm, Brain,Neoplasm, Intracranial,Primary Brain Neoplasm,Primary Brain Tumor,Primary Brain Tumors,Recurrent Brain Tumor,Recurrent Brain Tumors,Tumor, Brain
D005909 Glioblastoma A malignant form of astrocytoma histologically characterized by pleomorphism of cells, nuclear atypia, microhemorrhage, and necrosis. They may arise in any region of the central nervous system, with a predilection for the cerebral hemispheres, basal ganglia, and commissural pathways. Clinical presentation most frequently occurs in the fifth or sixth decade of life with focal neurologic signs or seizures. Astrocytoma, Grade IV,Giant Cell Glioblastoma,Glioblastoma Multiforme,Astrocytomas, Grade IV,Giant Cell Glioblastomas,Glioblastoma, Giant Cell,Glioblastomas,Glioblastomas, Giant Cell,Grade IV Astrocytoma,Grade IV Astrocytomas
D005910 Glioma Benign and malignant central nervous system neoplasms derived from glial cells (i.e., astrocytes, oligodendrocytes, and ependymocytes). Astrocytes may give rise to astrocytomas (ASTROCYTOMA) or glioblastoma multiforme (see GLIOBLASTOMA). Oligodendrocytes give rise to oligodendrogliomas (OLIGODENDROGLIOMA) and ependymocytes may undergo transformation to become EPENDYMOMA; CHOROID PLEXUS NEOPLASMS; or colloid cysts of the third ventricle. (From Escourolle et al., Manual of Basic Neuropathology, 2nd ed, p21) Glial Cell Tumors,Malignant Glioma,Mixed Glioma,Glial Cell Tumor,Glioma, Malignant,Glioma, Mixed,Gliomas,Gliomas, Malignant,Gliomas, Mixed,Malignant Gliomas,Mixed Gliomas,Tumor, Glial Cell,Tumors, Glial Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

M Kuramitsu, and H Sawa, and I Takeshita, and T Iwaki, and K Kato
May 1986, Laboratory investigation; a journal of technical methods and pathology,
M Kuramitsu, and H Sawa, and I Takeshita, and T Iwaki, and K Kato
October 1987, Japanese journal of cancer research : Gann,
M Kuramitsu, and H Sawa, and I Takeshita, and T Iwaki, and K Kato
January 1999, Anticancer research,
M Kuramitsu, and H Sawa, and I Takeshita, and T Iwaki, and K Kato
April 1987, Rinsho byori. The Japanese journal of clinical pathology,
M Kuramitsu, and H Sawa, and I Takeshita, and T Iwaki, and K Kato
April 1997, Revue des maladies respiratoires,
M Kuramitsu, and H Sawa, and I Takeshita, and T Iwaki, and K Kato
January 1994, The International journal of biological markers,
M Kuramitsu, and H Sawa, and I Takeshita, and T Iwaki, and K Kato
July 2010, Nihon rinsho. Japanese journal of clinical medicine,
M Kuramitsu, and H Sawa, and I Takeshita, and T Iwaki, and K Kato
November 1984, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
M Kuramitsu, and H Sawa, and I Takeshita, and T Iwaki, and K Kato
August 2005, Nihon rinsho. Japanese journal of clinical medicine,
M Kuramitsu, and H Sawa, and I Takeshita, and T Iwaki, and K Kato
January 1988, Neurochemical research,
Copied contents to your clipboard!