Ornamental hyperaccumulator Mirabilis jalapa L. phytoremediating combine contaminated soil enhanced by some chelators and surfactants. 2018

Shuhe Wei, and Lei Xu, and Huiping Dai, and Yahu Hu
Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, People's Republic of China. shuhewei@iae.ac.cn.

Mirabilis jalapa L. is an ornamental plant of the composite family, which was found hyperaccumulating Cd. Due to its larger biomass, developed root system, root exudation, and microbial interactions, certain organic pollutants in its rhizosphere can be effectively degraded. Thus, M. jalapacan be used to co-remediate heavy metal and organic pollutant co-contaminated soil. The aim of this paper is to explore the remediation capacity of M. jalapa for Cd-PAHs co-contaminated soil in the presence of five chelators or surfactants. The concentrations of Cd and PAHs in collected soil samples were 0.85 mg kg-1 Cd and 1.138 mg kg-1 PAHs (16 kinds of priority control polycyclic aromatic hydrocarbons by USEPA). The chelators or surfactants of EDTA, EGTA, CA, TW80, and SA were respectively spiked to the pots according to the experiment design at 1 month before the plant harvested. The results showed that the capacity of Cd in shoot of M. jalapa was 7.99 μg pot-1 without any addition (CK4, M. jalapa in original soil without amendment). However, Cd capacity in shoot of M. jalapa was increased (p < 0.05) by 31.7%, 181.7%, and 107.4% in treatment of REGTA, RCA and REGTA + SA, respectively. As for the degradation of PAHs in soil, there was no significant decrease (p < 0.05) in the treatment of CK2 (original soil spiked with 0.9 SA without M. jalapa), CK3 (original soil spiked with 0.3 TW80 without M. jalapa), and CK4 compared to the control CK1 (original soil without M. jalapa and amendment). When amendments were added to soils with M. jalapa,the PAHs concentrations in soils significantly decreased (p < 0.05) by 21.7%, 23.8%, 27.0%, 19.8%, 21.8%, 31.2%, and 25.5% for the treatment of REDTA + SA, REDTA + T80, REGTA + SA, REGTA + T80, RCA + T80, RSA + T80 + EDTA, and RSA + T80 + CA, respectively. Basically, Cd capacity in shoot of M. jalapa was improved by chelators. PAHs degradation was caused by the existence of surfactants in rhizosphere of M. jalapa. But the roles of different chelators or surfactants were quite distinct. In short, the Cd capacity in the shoot and PAHs degradation in the rhizosphere of M. jalapa in the treatment of REGTA + SA were all significantly increased (p < 0.05), which was more practical for M. jalapa phytoremediating Cd-PAHs co-contaminated soil.

UI MeSH Term Description Entries
D011084 Polycyclic Aromatic Hydrocarbons Aromatic hydrocarbons that contain extended fused-ring structures. Polycyclic Aromatic Hydrocarbon,Polycyclic Hydrocarbons, Aromatic,Polynuclear Aromatic Hydrocarbon,Polynuclear Aromatic Hydrocarbons,Aromatic Hydrocarbon, Polycyclic,Aromatic Hydrocarbon, Polynuclear,Aromatic Hydrocarbons, Polycyclic,Aromatic Hydrocarbons, Polynuclear,Aromatic Polycyclic Hydrocarbons,Hydrocarbon, Polycyclic Aromatic,Hydrocarbon, Polynuclear Aromatic,Hydrocarbons, Aromatic Polycyclic,Hydrocarbons, Polycyclic Aromatic,Hydrocarbons, Polynuclear Aromatic
D002614 Chelating Agents Chemicals that bind to and remove ions from solutions. Many chelating agents function through the formation of COORDINATION COMPLEXES with METALS. Chelating Agent,Chelator,Complexons,Metal Antagonists,Chelators,Metal Chelating Agents,Agent, Chelating,Agents, Chelating,Agents, Metal Chelating,Antagonists, Metal,Chelating Agents, Metal
D001673 Biodegradation, Environmental Elimination of ENVIRONMENTAL POLLUTANTS; PESTICIDES and other waste using living organisms, usually involving intervention of environmental or sanitation engineers. Bioremediation,Phytoremediation,Natural Attenuation, Pollution,Environmental Biodegradation,Pollution Natural Attenuation
D012987 Soil The unconsolidated mineral or organic matter on the surface of the earth that serves as a natural medium for the growth of land plants. Peat,Humus,Soils
D012989 Soil Pollutants Substances which pollute the soil. Use for soil pollutants in general or for which there is no specific heading. Soil Pollutant,Pollutant, Soil,Pollutants, Soil
D013501 Surface-Active Agents Agents that modify interfacial tension of water; usually substances that have one lipophilic and one hydrophilic group in the molecule; includes soaps, detergents, emulsifiers, dispersing and wetting agents, and several groups of antiseptics. Surface Active Agent,Surface-Active Agent,Surfactant,Surfactants,Tenside,Amphiphilic Agents,Surface Active Agents,Tensides,Active Agent, Surface,Active Agents, Surface,Agent, Surface Active,Agent, Surface-Active,Agents, Amphiphilic,Agents, Surface Active,Agents, Surface-Active
D058441 Rhizosphere The immediate physical zone surrounding plant roots that include the plant roots. It is an area of intense and complex biological activity involving plants, microorganisms, other soil organisms, and the soil. Rhizospheres
D018533 Biomass Total mass of all the organisms of a given type and/or in a given area. (From Concise Dictionary of Biology, 1990) It includes the yield of vegetative mass produced from any given crop. Biomasses
D019216 Metals, Heavy Metals with high specific gravity, typically larger than 5. They have complex spectra, form colored salts and double salts, have a low electrode potential, are mainly amphoteric, yield weak bases and weak acids, and are oxidizing or reducing agents (From Grant & Hackh's Chemical Dictionary, 5th ed) Heavy Metal,Heavy Metals,Metal, Heavy
D039282 Mirabilis A plant genus of the family NYCTAGINACEAE. Members contain Mirabilis antiviral protein (a ribosome-inactivating protein). Mirabili

Related Publications

Shuhe Wei, and Lei Xu, and Huiping Dai, and Yahu Hu
May 2022, Environmental science and pollution research international,
Shuhe Wei, and Lei Xu, and Huiping Dai, and Yahu Hu
August 2017, Bulletin of environmental contamination and toxicology,
Shuhe Wei, and Lei Xu, and Huiping Dai, and Yahu Hu
August 2015, Huan jing ke xue= Huanjing kexue,
Shuhe Wei, and Lei Xu, and Huiping Dai, and Yahu Hu
April 2020, Environmental science and pollution research international,
Shuhe Wei, and Lei Xu, and Huiping Dai, and Yahu Hu
September 2009, Journal of hazardous materials,
Shuhe Wei, and Lei Xu, and Huiping Dai, and Yahu Hu
September 2015, International journal of systematic and evolutionary microbiology,
Shuhe Wei, and Lei Xu, and Huiping Dai, and Yahu Hu
November 2010, Bioresource technology,
Shuhe Wei, and Lei Xu, and Huiping Dai, and Yahu Hu
January 2016, International journal of phytoremediation,
Shuhe Wei, and Lei Xu, and Huiping Dai, and Yahu Hu
November 1934, Genetics,
Shuhe Wei, and Lei Xu, and Huiping Dai, and Yahu Hu
December 1992, Biochemistry international,
Copied contents to your clipboard!