Application of pancreatic phospholipase A2 for treatment of bovine mastitis. 2018

Eyal Seroussi, and Shlomo E Blum, and Oleg Krifucks, and Yaniv Lavon, and Gabriel Leitner
Institute of Animal Science, Agricultural Research Organization (ARO), Rishon LeTsiyon, Israel.

Recent findings have indicated that secreted phospholipases A2 (sPLA2s) have anti-inflammatory functions, including relief of symptoms in a mouse model of mastitis. This prompted us to investigate the therapeutic application of sPLA2, PLA2G1B, for bovine mastitis. Initial testing of PLA2G1B's effect on bovine mammary epithelial cell (bMEC) line PS revealed no changes in cell viability or cytokine-secretion pattern. However, when cells were first treated with lipopolysaccharide endotoxin (LPS) or live bacteria (Escherichia coli or Staphylococcus aureus), incubation with PLA2G1B significantly improved cell viability, suggesting involvement of sPLA2s in protecting membranes from lipid-peroxidation damage, rather than a bactericidal action. When PLA2G1B was applied simultaneously with LPS, a significant short-term reduction in interleukin-8 secretion was observed compared with bMECs treated only with LPS, supporting previous reports that PLA2G1B affects interleukin-8 signaling in similar cells. Following the favorable outcome of the in vitro experiments, we tested PLA2G1B in vivo by mammary infusion into infected glands. In one of a small sample (n = 4) of lactating cows chronically infected with Streptococcus dysgalactiae, a single PLA2G1B treatment completely cleared inflammation and bacteria, demonstrating its potential to cure subclinical mastitis. PLA2G1B treatment did not affect coagulase-negative staphylococci infection. These types of mastitis may involve formation of a resistant biofilm, and its elimination may relate to sPLA2s' characteristic ability to aggregate with cellular debris, facilitating their internalization by macrophages. In a bovine model of clinical mastitis based on introduction of E. coli via the streak canal, a single mammary infusion of PLA2G1B led to faster recovery to pre-infection milk-yield levels and decrease of somatic cell counts. In this case, all of sPLA2s' modes of resolving inflammation may apply, including competitive binding of the sPLA2s' receptor, the inactivation of which confers resistance to endotoxic shock. Hence, this study strongly supports further research into PLA2G1B as a cure for bovine mastitis.

UI MeSH Term Description Entries
D007774 Lactation The processes of milk secretion by the maternal MAMMARY GLANDS after PARTURITION. The proliferation of the mammary glandular tissue, milk synthesis, and milk expulsion or let down are regulated by the interactions of several hormones including ESTRADIOL; PROGESTERONE; PROLACTIN; and OXYTOCIN. Lactation, Prolonged,Milk Secretion,Lactations, Prolonged,Milk Secretions,Prolonged Lactation,Prolonged Lactations
D008414 Mastitis, Bovine INFLAMMATION of the UDDER in cows. Bovine Mastitides,Bovine Mastitis,Mastitides, Bovine
D010179 Pancreas A nodular organ in the ABDOMEN that contains a mixture of ENDOCRINE GLANDS and EXOCRINE GLANDS. The small endocrine portion consists of the ISLETS OF LANGERHANS secreting a number of hormones into the blood stream. The large exocrine portion (EXOCRINE PANCREAS) is a compound acinar gland that secretes several digestive enzymes into the pancreatic ductal system that empties into the DUODENUM.
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000900 Anti-Bacterial Agents Substances that inhibit the growth or reproduction of BACTERIA. Anti-Bacterial Agent,Anti-Bacterial Compound,Anti-Mycobacterial Agent,Antibacterial Agent,Antibiotics,Antimycobacterial Agent,Bacteriocidal Agent,Bacteriocide,Anti-Bacterial Compounds,Anti-Mycobacterial Agents,Antibacterial Agents,Antibiotic,Antimycobacterial Agents,Bacteriocidal Agents,Bacteriocides,Agent, Anti-Bacterial,Agent, Anti-Mycobacterial,Agent, Antibacterial,Agent, Antimycobacterial,Agent, Bacteriocidal,Agents, Anti-Bacterial,Agents, Anti-Mycobacterial,Agents, Antibacterial,Agents, Antimycobacterial,Agents, Bacteriocidal,Anti Bacterial Agent,Anti Bacterial Agents,Anti Bacterial Compound,Anti Bacterial Compounds,Anti Mycobacterial Agent,Anti Mycobacterial Agents,Compound, Anti-Bacterial,Compounds, Anti-Bacterial

Related Publications

Eyal Seroussi, and Shlomo E Blum, and Oleg Krifucks, and Yaniv Lavon, and Gabriel Leitner
January 1978, European journal of biochemistry,
Eyal Seroussi, and Shlomo E Blum, and Oleg Krifucks, and Yaniv Lavon, and Gabriel Leitner
March 1981, Biochemistry,
Eyal Seroussi, and Shlomo E Blum, and Oleg Krifucks, and Yaniv Lavon, and Gabriel Leitner
April 1987, Nucleic acids research,
Eyal Seroussi, and Shlomo E Blum, and Oleg Krifucks, and Yaniv Lavon, and Gabriel Leitner
January 1999, Acta crystallographica. Section D, Biological crystallography,
Eyal Seroussi, and Shlomo E Blum, and Oleg Krifucks, and Yaniv Lavon, and Gabriel Leitner
March 1990, Agricultural and biological chemistry,
Eyal Seroussi, and Shlomo E Blum, and Oleg Krifucks, and Yaniv Lavon, and Gabriel Leitner
March 1981, Journal of molecular biology,
Eyal Seroussi, and Shlomo E Blum, and Oleg Krifucks, and Yaniv Lavon, and Gabriel Leitner
July 1983, Journal of molecular biology,
Eyal Seroussi, and Shlomo E Blum, and Oleg Krifucks, and Yaniv Lavon, and Gabriel Leitner
February 1995, Nihon rinsho. Japanese journal of clinical medicine,
Eyal Seroussi, and Shlomo E Blum, and Oleg Krifucks, and Yaniv Lavon, and Gabriel Leitner
November 2004, Nihon rinsho. Japanese journal of clinical medicine,
Eyal Seroussi, and Shlomo E Blum, and Oleg Krifucks, and Yaniv Lavon, and Gabriel Leitner
November 2001, Rinsho byori. The Japanese journal of clinical pathology,
Copied contents to your clipboard!