The effect of dibutyryl cyclic AMP on the uptake of taurocholic acid by isolated rat liver cells. 1986

K M Botham, and K E Suckling

The effect of dibutyryl cyclic AMP on the uptake of taurocholic acid by isolated rat hepatocytes was studied. In the presence of low levels (10-100 microM) of the cyclic nucleotide the initial rate of uptake was increased significantly, with a peak occurring at about 20 microM. In contrast, concentrations of dibutyryl cyclic AMP between 200 microM and 1 mM caused a significant decrease in the initial rate of uptake of the bile acid by the cells. Sodium-dependent transport of taurocholic acid was found to be enhanced by 20 microM dibutyryl cyclic AMP, but sodium-independent uptake appeared to be unaffected. Inhibition by 1 mM dibutyryl cyclic AMP, however, was found to occur in both the sodium-dependent and -independent components of the transport system. The initial rate of taurocholic acid uptake in hepatocytes incubated with 1.2 mM extracellular calcium was increased compared to that in calcium-depleted cells, and this increase was entirely due to enhanced sodium-dependent transport. 1.2 mM calcium and 20 microM dibutyryl cyclic AMP together did not stimulate the uptake rate to a greater extent than either treatment alone. It is concluded that calcium and low levels of dibutyryl cyclic AMP alter the rate of taurocholic acid uptake by changing the flux of sodium in the hepatocytes. The inhibitory effect of 1 mM dibutyryl cyclic AMP was not relieved by the presence of 1.2 mM calcium in the cell incubation medium. The results show that dibutyryl cyclic AMP can affect the rate of transport of bile acid into liver cells, and suggest a possible regulatory role for cyclic AMP in this process.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D003994 Bucladesine A cyclic nucleotide derivative that mimics the action of endogenous CYCLIC AMP and is capable of permeating the cell membrane. It has vasodilator properties and is used as a cardiac stimulant. (From Merck Index, 11th ed) Dibutyryl Adenosine-3',5'-Monophosphate,Dibutyryl Cyclic AMP,(But)(2) cAMP,Bucladesine, Barium (1:1) Salt,Bucladesine, Disodium Salt,Bucladesine, Monosodium Salt,Bucladesine, Sodium Salt,DBcAMP,Dibutyryl Adenosine 3,5 Monophosphate,N',O'-Dibutyryl-cAMP,N(6),0(2')-Dibutyryl Cyclic AMP,AMP, Dibutyryl Cyclic,Adenosine-3',5'-Monophosphate, Dibutyryl,Cyclic AMP, Dibutyryl,Dibutyryl Adenosine 3',5' Monophosphate,Disodium Salt Bucladesine,Monosodium Salt Bucladesine,N',O' Dibutyryl cAMP,Sodium Salt Bucladesine
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012964 Sodium A member of the alkali group of metals. It has the atomic symbol Na, atomic number 11, and atomic weight 23. Sodium Ion Level,Sodium-23,Ion Level, Sodium,Level, Sodium Ion,Sodium 23
D013656 Taurocholic Acid The product of conjugation of cholic acid with taurine. Its sodium salt is the chief ingredient of the bile of carnivorous animals. It acts as a detergent to solubilize fats for absorption and is itself absorbed. It is used as a cholagogue and cholerectic. Cholyltaurine,Taurine Cholate,Taurocholate,Sodium Taurocholate,Taurocholate Sodium,Taurocholic Acid, (5 alpha)-Isomer,Taurocholic Acid, (7 beta)-Isomer,Taurocholic Acid, Monolithium Salt,Taurocholic Acid, Monosodium Salt,Taurocholate, Sodium
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

K M Botham, and K E Suckling
July 1975, European journal of biochemistry,
K M Botham, and K E Suckling
January 1975, Naunyn-Schmiedeberg's archives of pharmacology,
K M Botham, and K E Suckling
November 1995, Biochemical Society transactions,
K M Botham, and K E Suckling
January 1977, Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme,
K M Botham, and K E Suckling
February 1988, Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme,
K M Botham, and K E Suckling
May 1974, Endocrinology,
K M Botham, and K E Suckling
February 1977, Biochemical and biophysical research communications,
Copied contents to your clipboard!