Genomic meta-analysis of the interplay between 3D chromatin organization and gene expression programs under basal and stress conditions. 2018

Idan Nurick, and Ron Shamir, and Ran Elkon
The Blavatnik School of Computer Science, Tel Aviv University, 69978, Tel Aviv, Israel.

Our appreciation of the critical role of the genome's 3D organization in gene regulation is steadily increasing. Recent 3C-based deep sequencing techniques elucidated a hierarchy of structures that underlie the spatial organization of the genome in the nucleus. At the top of this hierarchical organization are chromosomal territories and the megabase-scale A/B compartments that correlate with transcriptional activity within cells. Below them are the relatively cell-type-invariant topologically associated domains (TADs), characterized by high frequency of physical contacts between loci within the same TAD, and are assumed to function as regulatory units. Within TADs, chromatin loops bring enhancers and target promoters to close spatial proximity. Yet, we still have only rudimentary understanding how differences in chromatin organization between different cell types affect cell-type-specific gene expression programs that are executed under basal and challenged conditions. Here, we carried out a large-scale meta-analysis that integrated Hi-C data from thirteen different cell lines and dozens of ChIP-seq and RNA-seq datasets measured on these cells, either under basal conditions or after treatment. Pairwise comparisons between cell lines demonstrate a strong association between modulation of A/B compartmentalization, differential gene expression and transcription factor (TF) binding events. Furthermore, integrating the analysis of transcriptomes of different cell lines in response to various challenges, we show that A/B compartmentalization of cells under basal conditions significantly correlates not only with gene expression programs and TF binding profiles that are active under the basal condition but also with those induced in response to treatment. Yet, in pairwise comparisons between different cell lines, we find that a large portion of differential TF binding and gene induction events occur in genomic loci assigned to A compartment in both cell types, underscoring the role of additional critical factors in determining cell-type-specific transcriptional programs. Our results further indicate the role of dynamic genome organization in regulation of differential gene expression between different cell types and the impact of intra-TAD enhancer-promoter interactions that are established under basal conditions on both the basal and treatment-induced gene expression programs.

UI MeSH Term Description Entries
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004742 Enhancer Elements, Genetic Cis-acting DNA sequences which can increase transcription of genes. Enhancers can usually function in either orientation and at various distances from a promoter. Enhancer Elements,Enhancer Sequences,Element, Enhancer,Element, Genetic Enhancer,Elements, Enhancer,Elements, Genetic Enhancer,Enhancer Element,Enhancer Element, Genetic,Enhancer Sequence,Genetic Enhancer Element,Genetic Enhancer Elements,Sequence, Enhancer,Sequences, Enhancer
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D013312 Stress, Physiological The unfavorable effect of environmental factors (stressors) on the physiological functions of an organism. Prolonged unresolved physiological stress can affect HOMEOSTASIS of the organism, and may lead to damaging or pathological conditions. Biotic Stress,Metabolic Stress,Physiological Stress,Abiotic Stress,Abiotic Stress Reaction,Abiotic Stress Response,Biological Stress,Metabolic Stress Response,Physiological Stress Reaction,Physiological Stress Reactivity,Physiological Stress Response,Abiotic Stress Reactions,Abiotic Stress Responses,Abiotic Stresses,Biological Stresses,Biotic Stresses,Metabolic Stress Responses,Metabolic Stresses,Physiological Stress Reactions,Physiological Stress Responses,Physiological Stresses,Reaction, Abiotic Stress,Reactions, Abiotic Stress,Response, Abiotic Stress,Response, Metabolic Stress,Stress Reaction, Physiological,Stress Response, Metabolic,Stress Response, Physiological,Stress, Abiotic,Stress, Biological,Stress, Biotic,Stress, Metabolic
D015894 Genome, Human The complete genetic complement contained in the DNA of a set of CHROMOSOMES in a HUMAN. The length of the human genome is about 3 billion base pairs. Human Genome,Genomes, Human,Human Genomes
D042002 Chromatin Assembly and Disassembly The mechanisms effecting establishment, maintenance, and modification of that specific physical conformation of CHROMATIN determining the transcriptional accessibility or inaccessibility of the DNA. Chromatin Remodeling,Chromatin Assembly,Chromatin Disassembly,Chromatin Modeling,Chromatin Disassemblies,Disassembly, Chromatin,Remodeling, Chromatin

Related Publications

Idan Nurick, and Ron Shamir, and Ran Elkon
April 2020, Current opinion in genetics & development,
Idan Nurick, and Ron Shamir, and Ran Elkon
June 2012, Bioinformatics (Oxford, England),
Idan Nurick, and Ron Shamir, and Ran Elkon
October 2023, Nature communications,
Idan Nurick, and Ron Shamir, and Ran Elkon
December 2023, BMB reports,
Idan Nurick, and Ron Shamir, and Ran Elkon
September 2017, PLoS computational biology,
Idan Nurick, and Ron Shamir, and Ran Elkon
December 2001, Journal of physiology and pharmacology : an official journal of the Polish Physiological Society,
Idan Nurick, and Ron Shamir, and Ran Elkon
March 2015, Cell reports,
Idan Nurick, and Ron Shamir, and Ran Elkon
June 2004, Gene,
Idan Nurick, and Ron Shamir, and Ran Elkon
March 2018, FASEB journal : official publication of the Federation of American Societies for Experimental Biology,
Copied contents to your clipboard!