Binding and metabolism of platelet-activating factor by human neutrophils. 1986

J T O'Flaherty, and J R Surles, and J Redman, and D Jacobson, and C Piantadosi, and R L Wykle

Human polymorphonuclear neutrophils rapidly incorporated radiolabeled platelet-activating factor, 1-O-[hexadecyl-9, 10-3H2]-2-acetyl-sn-glycero-3-phosphocholine ([3H]PAF), and then metabolized it into its sn-2-fatty acyl derivative. Fractionation of radiolabel-pretreated cells over Percoll gradients revealed that virtually all of the intact [3H]PAF was located in nongranule membranes that were enriched with alkaline phosphatase and cell surface glycoproteins. While still membrane associated, the ligand was rapidly converted to its acyl derivative and then more slowly transferred to specific granules and, to a lesser extent, azurophilic granules. In contrast, neutrophils did not metabolize [3H]PAF at 4 degrees C but rather gradually accumulated it in their alkaline phosphatase-enriched membrane subfractions. These same subfractions contained receptors for the ligand, as determined by their capacity to bind [3H]PAF specifically. Binding was readily saturated, partially reversible, and fit a two receptor model; dissociation constant (Kd) values for high and low affinity sites were 0.2 and 500 nM, respectively. Receptors with similar affinities were detected in whole cells. Furthermore, the potencies of several structural analogues in inhibiting binding of [3H]PAF to membranes correlated closely with their respective potencies in stimulating degranulation responses. Finally, quantitative studies suggested all or most of the cell's receptors were membrane associated. We conclude that PAF rapidly enters cellular membranes to bind with specific receptors that trigger function. The intramembranous ligand is also deacetylated, acylated, and then transferred to granules. This metabolism may be sufficiently rapid to limit ligand-receptor binding and distort quantitative analyses of receptors.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009504 Neutrophils Granular leukocytes having a nucleus with three to five lobes connected by slender threads of chromatin, and cytoplasm containing fine inconspicuous granules and stainable by neutral dyes. LE Cells,Leukocytes, Polymorphonuclear,Polymorphonuclear Leukocytes,Polymorphonuclear Neutrophils,Neutrophil Band Cells,Band Cell, Neutrophil,Cell, LE,LE Cell,Leukocyte, Polymorphonuclear,Neutrophil,Neutrophil Band Cell,Neutrophil, Polymorphonuclear,Polymorphonuclear Leukocyte,Polymorphonuclear Neutrophil
D010972 Platelet Activating Factor A phospholipid derivative formed by PLATELETS; BASOPHILS; NEUTROPHILS; MONOCYTES; and MACROPHAGES. It is a potent platelet aggregating agent and inducer of systemic anaphylactic symptoms, including HYPOTENSION; THROMBOCYTOPENIA; NEUTROPENIA; and BRONCHOCONSTRICTION. AGEPC,Acetyl Glyceryl Ether Phosphorylcholine,PAF-Acether,Phosphorylcholine, Acetyl Glyceryl Ether,1-Alkyl-2-acetyl-sn-glycerophosphocholine,Platelet Aggregating Factor,Platelet Aggregation Enhancing Factor,Platelet-Activating Substance,Thrombocyte Aggregating Activity,1 Alkyl 2 acetyl sn glycerophosphocholine,Aggregating Factor, Platelet,Factor, Platelet Activating,PAF Acether,Platelet Activating Substance
D010980 Platelet Membrane Glycoproteins Surface glycoproteins on platelets which have a key role in hemostasis and thrombosis such as platelet adhesion and aggregation. Many of these are receptors. PM-GP,Platelet Glycoprotein,Platelet Membrane Glycoprotein,PM-GPs,Platelet Glycoproteins,Glycoprotein, Platelet,Glycoprotein, Platelet Membrane,Glycoproteins, Platelet,Glycoproteins, Platelet Membrane,Membrane Glycoprotein, Platelet,Membrane Glycoproteins, Platelet,PM GP
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D001792 Blood Platelets Non-nucleated disk-shaped cells formed in the megakaryocyte and found in the blood of all mammals. They are mainly involved in blood coagulation. Platelets,Thrombocytes,Blood Platelet,Platelet,Platelet, Blood,Platelets, Blood,Thrombocyte
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002499 Centrifugation, Density Gradient Separation of particles according to density by employing a gradient of varying densities. At equilibrium each particle settles in the gradient at a point equal to its density. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Centrifugations, Density Gradient,Density Gradient Centrifugation,Density Gradient Centrifugations,Gradient Centrifugation, Density,Gradient Centrifugations, Density
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001667 Binding, Competitive The interaction of two or more substrates or ligands with the same binding site. The displacement of one by the other is used in quantitative and selective affinity measurements. Competitive Binding

Related Publications

J T O'Flaherty, and J R Surles, and J Redman, and D Jacobson, and C Piantadosi, and R L Wykle
September 1989, Lipids,
J T O'Flaherty, and J R Surles, and J Redman, and D Jacobson, and C Piantadosi, and R L Wykle
March 1988, Journal of immunology (Baltimore, Md. : 1950),
J T O'Flaherty, and J R Surles, and J Redman, and D Jacobson, and C Piantadosi, and R L Wykle
April 1988, Thrombosis research,
J T O'Flaherty, and J R Surles, and J Redman, and D Jacobson, and C Piantadosi, and R L Wykle
June 1988, Journal of immunological methods,
J T O'Flaherty, and J R Surles, and J Redman, and D Jacobson, and C Piantadosi, and R L Wykle
December 1992, Biochemical and biophysical research communications,
J T O'Flaherty, and J R Surles, and J Redman, and D Jacobson, and C Piantadosi, and R L Wykle
September 1991, The American journal of physiology,
J T O'Flaherty, and J R Surles, and J Redman, and D Jacobson, and C Piantadosi, and R L Wykle
November 2021, Veterinary immunology and immunopathology,
J T O'Flaherty, and J R Surles, and J Redman, and D Jacobson, and C Piantadosi, and R L Wykle
October 1986, Biotechnology and applied biochemistry,
J T O'Flaherty, and J R Surles, and J Redman, and D Jacobson, and C Piantadosi, and R L Wykle
January 1990, Advances in experimental medicine and biology,
J T O'Flaherty, and J R Surles, and J Redman, and D Jacobson, and C Piantadosi, and R L Wykle
June 1996, International archives of allergy and immunology,
Copied contents to your clipboard!