Cellular proteins which can specifically associate with simian virus 40 small t antigen. 1986

C I Murphy, and I Bikel, and D M Livingston

When crude, radiolabeled extracts of various cells were applied to homogeneous simian virus 40 small t antigen-Sepharose adsorbents, three cell proteins (57, 32, and 20 kilodaltons [kDa]) bound specifically. Each also bound to an insoluble, truncated t derivative composed of the COOH-terminal 123 residues of the protein. The binding of these proteins was greatly inhibited after reduction and alkylation of the t ligand. Therefore, some element of native conformation, but not all of the primary structure of t, is necessary for this binding property, which may constitute a discrete, in vitro biochemical function of this protein. Results of cell fractionation experiments suggested that the 57- and 32-kDa proteins are nonnuclear cell constituents, whereas the 20-kDa protein was closely associated with a detergent-washed nuclear fraction. Specific immunoblotting and comparative partial proteolytic digestion analyses indicated that the 57-kDa protein is tubulin, a major component of the cytoskeleton. In this regard, t and tubulin were observed to coimmunoprecipitate from crude cell extracts after incubation with monospecific anti-t antibody. Therefore, it is possible that t and tubulin interact in vivo.

UI MeSH Term Description Entries
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D009856 Oncogene Proteins, Viral Products of viral oncogenes, most commonly retroviral oncogenes. They usually have transforming and often protein kinase activities. Viral Oncogene Proteins,Viral Transforming Proteins,v-onc Proteins,Transforming Proteins, Viral,v onc Proteins
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D002458 Cell Fractionation Techniques to partition various components of the cell into SUBCELLULAR FRACTIONS. Cell Fractionations,Fractionation, Cell,Fractionations, Cell
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000952 Antigens, Polyomavirus Transforming Polyomavirus antigens which cause infection and cellular transformation. The large T antigen is necessary for the initiation of viral DNA synthesis, repression of transcription of the early region and is responsible in conjunction with the middle T antigen for the transformation of primary cells. Small T antigen is necessary for the completion of the productive infection cycle. Polyomavirus Large T Antigens,Polyomavirus Middle T Antigens,Polyomavirus Small T Antigens,Polyomavirus T Proteins,Polyomavirus Transforming Antigens,Polyomavirus Tumor Antigens,SV40 T Antigens,SV40 T Proteins,Simian Sarcoma Virus Proteins,Polyomaviruses Large T Proteins,Polyomaviruses Middle T Proteins,Polyomaviruses Small T Proteins,Antigens, Polyomavirus Tumor,Antigens, SV40 T,Proteins, Polyomavirus T,Proteins, SV40 T,T Antigens, SV40,T Proteins, Polyomavirus,T Proteins, SV40,Transforming Antigens, Polyomavirus,Tumor Antigens, Polyomavirus
D000957 Antigens, Viral, Tumor Those proteins recognized by antibodies from serum of animals bearing tumors induced by viruses; these proteins are presumably coded for by the nucleic acids of the same viruses that caused the neoplastic transformation. Antigens, Neoplasm, Viral,Neoplasm Antigens, Viral,T Antigens,Tumor Antigens, Viral,Viral Tumor Antigens,Virus Transforming Antigens,Large T Antigen,Large T-Antigen,Small T Antigen,Small T-Antigen,T Antigen,T-Antigen,Viral T Antigens,Antigen, Large T,Antigen, Small T,Antigen, T,Antigens, T,Antigens, Viral Neoplasm,Antigens, Viral T,Antigens, Viral Tumor,Antigens, Virus Transforming,T Antigen, Large,T Antigen, Small,T Antigens, Viral,T-Antigen, Large,T-Antigen, Small,Transforming Antigens, Virus,Viral Neoplasm Antigens
D013539 Simian virus 40 A species of POLYOMAVIRUS originally isolated from Rhesus monkey kidney tissue. It produces malignancy in human and newborn hamster kidney cell cultures. SV40 Virus,Vacuolating Agent,Polyomavirus macacae,SV 40 Virus,SV 40 Viruses,SV40 Viruses,Vacuolating Agents

Related Publications

C I Murphy, and I Bikel, and D M Livingston
December 1988, Journal of virology,
C I Murphy, and I Bikel, and D M Livingston
May 1982, Journal of virology,
C I Murphy, and I Bikel, and D M Livingston
June 1982, Journal of virology,
C I Murphy, and I Bikel, and D M Livingston
June 1986, Molecular and cellular biology,
C I Murphy, and I Bikel, and D M Livingston
November 1977, Journal of virology,
C I Murphy, and I Bikel, and D M Livingston
June 1990, Journal of virology,
C I Murphy, and I Bikel, and D M Livingston
January 1979, Journal of virology,
C I Murphy, and I Bikel, and D M Livingston
March 1978, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!