Perceptual facilitation of word recognition through motor activation during sentence comprehension. 2018

Nicola Molinaro, and Irene F Monsalve
BCBL, Basque center on Cognition, Brain and Language, Donostia/San Sebastian, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain. Electronic address: n.molinaro@bcbl.eu.

Despite the growing literature on anticipatory language processing, the brain dynamics of this high-level predictive process are still unclear. In the present MEG study, we analyzed pre- and post-stimulus oscillatory activity time-locked to the reading of a target word. We experimentally contrasted the processing of the same target word following two highly constraining sentence contexts, in which the constraint was driven either by the semantic content or by the lexical association between words. Previous research suggests the presence of sensory facilitation for expected words in the latter condition but not in the former. We observed a dissociation between beta (∼20 Hz) and gamma (>50 Hz) band activity in pre- and post-stimulus time intervals respectively. Both the beta and gamma effects were evident in occipital brain regions, and only the pre-stimulus beta effect additionally involved left pre-articulatory motor regions. Lexically constrained (vs. semantically constrained) words elicited reduced beta power around 400 msec before the target word in motor regions and a functionally related gamma enhancement in occipital regions around 200 msec post-target. The present findings highlight the role of the motor network in word-form prediction and support proposals claiming that low-level perceptual representations can be pre-activated during language prediction.

UI MeSH Term Description Entries
D008279 Magnetic Resonance Imaging Non-invasive method of demonstrating internal anatomy based on the principle that atomic nuclei in a strong magnetic field absorb pulses of radiofrequency energy and emit them as radiowaves which can be reconstructed into computerized images. The concept includes proton spin tomographic techniques. Chemical Shift Imaging,MR Tomography,MRI Scans,MRI, Functional,Magnetic Resonance Image,Magnetic Resonance Imaging, Functional,Magnetization Transfer Contrast Imaging,NMR Imaging,NMR Tomography,Tomography, NMR,Tomography, Proton Spin,fMRI,Functional Magnetic Resonance Imaging,Imaging, Chemical Shift,Proton Spin Tomography,Spin Echo Imaging,Steady-State Free Precession MRI,Tomography, MR,Zeugmatography,Chemical Shift Imagings,Echo Imaging, Spin,Echo Imagings, Spin,Functional MRI,Functional MRIs,Image, Magnetic Resonance,Imaging, Magnetic Resonance,Imaging, NMR,Imaging, Spin Echo,Imagings, Chemical Shift,Imagings, Spin Echo,MRI Scan,MRIs, Functional,Magnetic Resonance Images,Resonance Image, Magnetic,Scan, MRI,Scans, MRI,Shift Imaging, Chemical,Shift Imagings, Chemical,Spin Echo Imagings,Steady State Free Precession MRI
D008297 Male Males
D010775 Photic Stimulation Investigative technique commonly used during ELECTROENCEPHALOGRAPHY in which a series of bright light flashes or visual patterns are used to elicit brain activity. Stimulation, Photic,Visual Stimulation,Photic Stimulations,Stimulation, Visual,Stimulations, Photic,Stimulations, Visual,Visual Stimulations
D011930 Reaction Time The time from the onset of a stimulus until a response is observed. Response Latency,Response Speed,Response Time,Latency, Response,Reaction Times,Response Latencies,Response Times,Speed, Response,Speeds, Response
D011932 Reading Acquiring information from text.
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults
D015225 Magnetoencephalography The measurement of magnetic fields over the head generated by electric currents in the brain. As in any electrical conductor, electric fields in the brain are accompanied by orthogonal magnetic fields. The measurement of these fields provides information about the localization of brain activity which is complementary to that provided by ELECTROENCEPHALOGRAPHY. Magnetoencephalography may be used alone or together with electroencephalography, for measurement of spontaneous or evoked activity, and for research or clinical purposes. Magnetoencephalogram,Magnetoencephalograms

Related Publications

Nicola Molinaro, and Irene F Monsalve
January 2007, Neuropsychologia,
Nicola Molinaro, and Irene F Monsalve
June 2003, Perceptual and motor skills,
Nicola Molinaro, and Irene F Monsalve
March 1987, American annals of the deaf,
Nicola Molinaro, and Irene F Monsalve
February 2010, Cerebral cortex (New York, N.Y. : 1991),
Nicola Molinaro, and Irene F Monsalve
May 2020, Cognitive processing,
Nicola Molinaro, and Irene F Monsalve
January 2002, Journal of experimental psychology. Learning, memory, and cognition,
Nicola Molinaro, and Irene F Monsalve
February 2009, Cerebral cortex (New York, N.Y. : 1991),
Nicola Molinaro, and Irene F Monsalve
May 2006, Brain and language,
Nicola Molinaro, and Irene F Monsalve
November 2021, Cognitive processing,
Nicola Molinaro, and Irene F Monsalve
May 2012, Journal of memory and language,
Copied contents to your clipboard!