The oxidation of arachidonic acid by the cyclooxygenase activity of purified prostaglandin H synthase: spin trapping of a carbon-centered free radical intermediate. 1986

J Schreiber, and T E Eling, and R P Mason

The ESR spin trapping technique was used to study the first detectable radical intermediate in the oxidation of arachidonic acid by purified prostaglandin H synthase. The holoenzyme and the apoenzyme, reconstituted with either hematin or Mn2+ protoporphyrin IX, were investigated. Depending on the different types of enzyme activity present, arachidonic acid was oxidized to at least two free radicals. One of these radicals is thought to be the first ESR detectable radical intermediate in the conversion of arachidonic acid to prostaglandin G2 and was detected previously in incubations of ram seminal vesicle microsomes, which are rich in prostaglandin H synthase. The ESR findings correlated with oxygen incorporation into arachidonic acid and prostaglandin formation, where the spin trap inhibits oxygen incorporation and prostaglandin formation by apparently competing with oxygen for the carbon-centered radical. Substitution of arachidonic acid by octadeuterated (5, 6, 8, 9, 11, 12, 14, 15)-arachidonic acid confirmed that the radical adduct contained arachidonic acid that is bound to the spin trap at one of these eight positions. An attempt was made to explain the apparent time lag between the metabolic activity observed in the oxygraph measurements and the appearance of the trapped radical signals.

UI MeSH Term Description Entries
D008297 Male Males
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D011451 Prostaglandin-Endoperoxide Synthases Enzyme complexes that catalyze the formation of PROSTAGLANDINS from the appropriate unsaturated FATTY ACIDS, molecular OXYGEN, and a reduced acceptor. Fatty Acid Cyclo-Oxygenase,PGH Synthase,Prostaglandin H Synthase,Prostaglandin Synthase,Prostaglandin-Endoperoxide Synthase,Arachidonic Acid Cyclooxygenase,Cyclo-Oxygenase,Cyclooxygenase,Cyclooxygenases,Hydroperoxide Cyclase,PGH2 Synthetase,Prostaglandin Cyclo-Oxygenase,Prostaglandin Cyclooxygenase,Prostaglandin Endoperoxide Synthetase,Prostaglandin G-H Synthase,Prostaglandin H2 Synthetase,Prostaglandin Synthetase,Cyclase, Hydroperoxide,Cyclo Oxygenase,Cyclo-Oxygenase, Fatty Acid,Cyclo-Oxygenase, Prostaglandin,Cyclooxygenase, Arachidonic Acid,Cyclooxygenase, Prostaglandin,Endoperoxide Synthetase, Prostaglandin,Fatty Acid Cyclo Oxygenase,G-H Synthase, Prostaglandin,Prostaglandin Cyclo Oxygenase,Prostaglandin Endoperoxide Synthases,Prostaglandin G H Synthase,Synthase, PGH,Synthase, Prostaglandin,Synthase, Prostaglandin G-H,Synthase, Prostaglandin H,Synthase, Prostaglandin-Endoperoxide,Synthases, Prostaglandin-Endoperoxide,Synthetase, PGH2,Synthetase, Prostaglandin,Synthetase, Prostaglandin Endoperoxide,Synthetase, Prostaglandin H2
D011524 Protoporphyrins Porphyrins with four methyl, two vinyl, and two propionic acid side chains attached to the pyrrole rings. Protoporphyrin IX occurs in hemoglobin, myoglobin, and most of the cytochromes.
D004578 Electron Spin Resonance Spectroscopy A technique applicable to the wide variety of substances which exhibit paramagnetism because of the magnetic moments of unpaired electrons. The spectra are useful for detection and identification, for determination of electron structure, for study of interactions between molecules, and for measurement of nuclear spins and moments. (From McGraw-Hill Encyclopedia of Science and Technology, 7th edition) Electron nuclear double resonance (ENDOR) spectroscopy is a variant of the technique which can give enhanced resolution. Electron spin resonance analysis can now be used in vivo, including imaging applications such as MAGNETIC RESONANCE IMAGING. ENDOR,Electron Nuclear Double Resonance,Electron Paramagnetic Resonance,Paramagnetic Resonance,Electron Spin Resonance,Paramagnetic Resonance, Electron,Resonance, Electron Paramagnetic,Resonance, Electron Spin,Resonance, Paramagnetic
D005609 Free Radicals Highly reactive molecules with an unsatisfied electron valence pair. Free radicals are produced in both normal and pathological processes. Free radicals include reactive oxygen and nitrogen species (RONS). They are proven or suspected agents of tissue damage in a wide variety of circumstances including radiation, damage from environment chemicals, and aging. Natural and pharmacological prevention of free radical damage is being actively investigated. Free Radical
D006427 Hemin Chloro(7,12-diethenyl-3,8,13,17-tetramethyl-21H,23H-porphine-2,18-dipropanoato(4-)-N(21),N(22),N(23),N(24)) ferrate(2-) dihydrogen. Ferriprotoporphyrin,Hematin,Alkaline Hematin D-575,Chlorohemin,Ferrihaem,Ferriheme Chloride,Ferriprotoporphyrin IX,Ferriprotoporphyrin IX Chloride,Panhematin,Protohemin,Protohemin IX,Alkaline Hematin D 575,Chloride, Ferriheme,Chloride, Ferriprotoporphyrin IX,Hematin D-575, Alkaline
D000632 Aminopyrine A pyrazolone with analgesic, anti-inflammatory, and antipyretic properties but has risk of AGRANULOCYTOSIS. A breath test with 13C-labeled aminopyrine has been used as a non-invasive measure of CYTOCHROME P-450 metabolic activity in LIVER FUNCTION TESTS. Amidophenazon,Aminophenazone,Dimethylaminophenazone,Dipyrine,Amidazophen,Amidophen,Amidopyrine,Aminofenazone,Dimethyl-N-aminoantipyrine,Dimethylaminoantipyrine,Eufibron,Dimethyl N aminoantipyrine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

J Schreiber, and T E Eling, and R P Mason
January 1995, Chemical research in toxicology,
J Schreiber, and T E Eling, and R P Mason
November 2019, Free radical biology & medicine,
J Schreiber, and T E Eling, and R P Mason
July 2005, Free radical biology & medicine,
J Schreiber, and T E Eling, and R P Mason
May 1995, The Journal of biological chemistry,
J Schreiber, and T E Eling, and R P Mason
November 1987, European journal of biochemistry,
J Schreiber, and T E Eling, and R P Mason
September 1989, Journal of steroid biochemistry,
J Schreiber, and T E Eling, and R P Mason
August 1987, Prostaglandins,
Copied contents to your clipboard!