Synthesis and Characterization of 1,2-Dithiolane Modified Self-Assembling Peptides. 2018

Ruben Neves, and Kailyn Stephens, and Jillian E Smith-Carpenter
Department of Chemistry and Biochemistry, Fairfield University.

This report focuses on the synthesis of an N-terminus 1,2-dithiolane modified self-assembling peptide and the characterization of the resulting self-assembled supramolecular structures. The synthetic route takes advantage of solid-phase peptide synthesis with the on-resin coupling of the dithiolane precursor molecule, 3-(acetylthio)-2-(acetylthiomethyl)propanoic acid, and the microwave-assisted thioacetate deprotection of the peptide N-terminus before final cleavage from the resin to yield the 1,2-dithiolane modified peptide. After the high-performance liquid chromatography (HPLC) purification of the 1,2-dithiolane peptide, derived from the nucleating core of the Aβ peptide associated with Alzheimer's disease, the peptide is shown to self-assemble into cross-β amyloid fibers. Protocols to characterize the amyloid fibers by Fourier-transform infrared spectroscopy (FT-IR), circular dichroism spectroscopy (CD) and transmission electron microscopy (TEM) are presented. The methods of N-terminal modification with a 1,2-dithiolane moiety to well-characterized self-assembling peptides can now be explored as model systems to develop post-assembly modification strategies and explore dynamic covalent chemistry on supramolecular peptide nanofiber surfaces.

UI MeSH Term Description Entries
D008063 Thioctic Acid An octanoic acid bridged with two sulfurs so that it is sometimes also called a pentanoic acid in some naming schemes. It is biosynthesized by cleavage of LINOLEIC ACID and is a coenzyme of oxoglutarate dehydrogenase (KETOGLUTARATE DEHYDROGENASE COMPLEX). It is used in DIETARY SUPPLEMENTS. Lipoic Acid,Alpha-Lipogamma,Alpha-Lipon Stada,Alpha-Liponsaure Sofotec,Alpha-Lippon AL,Alphaflam,Azulipont,Fenint,Juthiac,Liponsaure-ratiopharm,MTW-Alphaliponsaure,Neurium,Pleomix-Alpha,Pleomix-Alpha N,Thioctacid,Thioctacide T,Thiogamma Injekt,Thiogamma oral,Tromlipon,Verla-Lipon,alpha-Lipoic Acid,alpha-Liponaure Heumann,alpha-Liponsaure von ct,alpha-Vibolex,biomo-lipon,duralipon,espa-lipon,Acid, alpha-Lipoic,Alpha Lipogamma,Alpha Lipon Stada,Alpha Liponsaure Sofotec,Alpha Lippon AL,AlphaLipogamma,AlphaLipon Stada,AlphaLiponsaure Sofotec,AlphaLippon AL,Injekt, Thiogamma,Liponsaure ratiopharm,Liponsaureratiopharm,MTW Alphaliponsaure,MTWAlphaliponsaure,Pleomix Alpha,Pleomix Alpha N,PleomixAlpha,PleomixAlpha N,Verla Lipon,VerlaLipon,alpha Lipoic Acid,alpha Liponaure Heumann,alpha Liponsaure von ct,alpha Vibolex,alphaLiponaure Heumann,alphaLiponsaure von ct,alphaVibolex,biomo lipon,biomolipon,espa lipon,espalipon
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D060327 Solid-Phase Synthesis Techniques Techniques used to synthesize chemicals using molecular substrates that are bound to a solid surface. Typically a series of reactions are conducted on the bound substrate that results in either the covalent attachment of specific moieties or the modification of existing function groups. These techniques offer an advantage to those involving solution reactions in that the substrate compound does not have to be isolated and purified between the reaction steps. Solid-Phase Synthesis,Peptide Synthesis, Solid-Phase,Solid-Phase Nucleotide Synthesis,Solid-Phase Nucleotide Synthesis Techniques,Solid-Phase Peptide Synthesis,Solid-Phase Peptide Synthesis Techniques,Solid-Phase Synthesis Methods,Synthesis, Solid-Phase,Method, Solid-Phase Synthesis,Methods, Solid-Phase Synthesis,Nucleotide Syntheses, Solid-Phase,Nucleotide Synthesis, Solid-Phase,Peptide Syntheses, Solid-Phase,Peptide Synthesis, Solid Phase,Solid Phase Nucleotide Synthesis,Solid Phase Nucleotide Synthesis Techniques,Solid Phase Peptide Synthesis,Solid Phase Peptide Synthesis Techniques,Solid Phase Synthesis,Solid Phase Synthesis Methods,Solid Phase Synthesis Techniques,Solid-Phase Nucleotide Syntheses,Solid-Phase Peptide Syntheses,Solid-Phase Syntheses,Solid-Phase Synthesis Method,Solid-Phase Synthesis Technique,Syntheses, Solid-Phase,Syntheses, Solid-Phase Nucleotide,Syntheses, Solid-Phase Peptide,Synthesis Method, Solid-Phase,Synthesis Methods, Solid-Phase,Synthesis Technique, Solid-Phase,Synthesis Techniques, Solid-Phase,Synthesis, Solid Phase,Synthesis, Solid-Phase Nucleotide,Synthesis, Solid-Phase Peptide,Technique, Solid-Phase Synthesis,Techniques, Solid-Phase Synthesis

Related Publications

Ruben Neves, and Kailyn Stephens, and Jillian E Smith-Carpenter
June 2005, Organic letters,
Ruben Neves, and Kailyn Stephens, and Jillian E Smith-Carpenter
January 2013, Nanoscale,
Ruben Neves, and Kailyn Stephens, and Jillian E Smith-Carpenter
September 2009, Bioorganic & medicinal chemistry,
Ruben Neves, and Kailyn Stephens, and Jillian E Smith-Carpenter
January 2003, European journal of medicinal chemistry,
Ruben Neves, and Kailyn Stephens, and Jillian E Smith-Carpenter
July 2014, Journal of peptide science : an official publication of the European Peptide Society,
Ruben Neves, and Kailyn Stephens, and Jillian E Smith-Carpenter
January 2022, Pakistan journal of pharmaceutical sciences,
Ruben Neves, and Kailyn Stephens, and Jillian E Smith-Carpenter
January 2022, Nanomaterials (Basel, Switzerland),
Ruben Neves, and Kailyn Stephens, and Jillian E Smith-Carpenter
February 2017, ACS omega,
Ruben Neves, and Kailyn Stephens, and Jillian E Smith-Carpenter
November 2006, Chemical Society reviews,
Ruben Neves, and Kailyn Stephens, and Jillian E Smith-Carpenter
December 2012, Accounts of chemical research,
Copied contents to your clipboard!