Attenuation of sn-1,2-diacylglycerol second messengers. Metabolism of exogenous diacylglycerols by human platelets. 1986

W R Bishop, and R M Bell

The metabolism of exogenous [3H]diacylglycerols by intact human platelets was studied in order to examine: the metabolic fate of these second messengers in an intact cell, the effect of diacylglycerol kinase and diacylglycerol lipase inhibitors on this metabolism, the effect of agonist stimulation on metabolism, and the dependence of metabolism on diacylglycerol chain length. When 2.5 microM [3H]dioctanoylglycerol (diC8) was added to 10(9) platelets it was rapidly metabolized; 80% was converted to various products in 2.5 min. Initially, 40% was recovered as 3H-labeled phospholipid (predominantly phosphatidic acid) reflecting the action of diacylglycerol kinase, 20% was recovered as [3H]glycerol due to the action of diacylglycerol and monoacylglycerol lipases, and small amounts were recovered as triacylglycerol and monoacylglycerol. Thrombin stimulation of platelets did not affect the rate or pathway of metabolism. Pretreatment of platelets with the diacylglycerol kinase inhibitors, diC8ethyleneglycol or 1-monooleoylglycerol, inhibited 3H-labeled phospholipid production 47% and 75%, respectively, and resulted in a longer lived diC8 signal. The diacylglycerol lipase inhibitor, RHC 80267, inhibited the production of water-soluble metabolites 75%. Despite inhibition of the lipase, the overall metabolism of exogenous [3H]diC8 occurred at a similar rate as in control platelets due to an increased flux towards phospholipid. The ability of exogenous diacylglycerols to be metabolized by diacylglycerol kinase correlated well with their ability to activate protein kinase C in platelets. [3H]Dibutyroylglycerol, didodecanoylglycerol, and ditetradecanoylglycerol, were not metabolized by this route. These diacylglycerols were still metabolized via the lipase pathway. The results indicate that platelets possess potent attenuation systems to defend against the accumulation of diacylglycerol second messengers, and that the primary metabolic fate of cell-permeable, exogenous diacylglycerols is conversion to phosphatidic acid.

UI MeSH Term Description Entries
D008071 Lipoprotein Lipase An enzyme of the hydrolase class that catalyzes the reaction of triacylglycerol and water to yield diacylglycerol and a fatty acid anion. The enzyme hydrolyzes triacylglycerols in chylomicrons, very-low-density lipoproteins, low-density lipoproteins, and diacylglycerols. It occurs on capillary endothelial surfaces, especially in mammary, muscle, and adipose tissue. Genetic deficiency of the enzyme causes familial hyperlipoproteinemia Type I. (Dorland, 27th ed) EC 3.1.1.34. Heparin-Clearing Factor,Lipemia-Clearing Factor,Diacylglycerol Lipase,Diglyceride Lipase,Post-Heparin Lipase,Postheparin Lipase,Postheparin Lipoprotein Lipase,Factor, Heparin-Clearing,Factor, Lipemia-Clearing,Heparin Clearing Factor,Lipase, Diacylglycerol,Lipase, Diglyceride,Lipase, Lipoprotein,Lipase, Post-Heparin,Lipase, Postheparin,Lipase, Postheparin Lipoprotein,Lipemia Clearing Factor,Lipoprotein Lipase, Postheparin,Post Heparin Lipase
D010770 Phosphotransferases A rather large group of enzymes comprising not only those transferring phosphate but also diphosphate, nucleotidyl residues, and others. These have also been subdivided according to the acceptor group. (From Enzyme Nomenclature, 1992) EC 2.7. Kinases,Phosphotransferase,Phosphotransferases, ATP,Transphosphorylase,Transphosphorylases,Kinase,ATP Phosphotransferases
D001792 Blood Platelets Non-nucleated disk-shaped cells formed in the megakaryocyte and found in the blood of all mammals. They are mainly involved in blood coagulation. Platelets,Thrombocytes,Blood Platelet,Platelet,Platelet, Blood,Platelets, Blood,Thrombocyte
D003512 Cyclohexanones Cyclohexane ring substituted by one or more ketones in any position.
D004075 Diglycerides Glycerides composed of two fatty acids esterified to the trihydric alcohol GLYCEROL. There are two possible forms that exist: 1,2-diacylglycerols and 1,3-diacylglycerols. Diacylglycerol,Diacylglycerols
D005989 Glycerides GLYCEROL esterified with FATTY ACIDS. Acylglycerol,Acylglycerols
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D013917 Thrombin An enzyme formed from PROTHROMBIN that converts FIBRINOGEN to FIBRIN. Thrombase,Thrombin JMI,Thrombin-JMI,Thrombinar,Thrombostat,alpha-Thrombin,beta,gamma-Thrombin,beta-Thrombin,gamma-Thrombin,JMI, Thrombin
D019852 Diacylglycerol Kinase An enzyme of the transferase class that uses ATP to catalyze the phosphorylation of diacylglycerol to a phosphatidate. EC 2.7.1.107. DAG Kinase,Diacylglycerol Kinase alpha (DGKA),Diglyceride Kinase,1,2-Diacylglycerol Kinase,Arachidonoyl-Diacylglycerol Kinase,Ceramide-Diglyceride Kinase,DGK alpha,DGK beta,DGK delta,DGK gamma,DGK-IV,DGKdelta,1,2 Diacylglycerol Kinase,Arachidonoyl Diacylglycerol Kinase,Ceramide Diglyceride Kinase,Kinase, 1,2-Diacylglycerol,Kinase, Arachidonoyl-Diacylglycerol,Kinase, Ceramide-Diglyceride,Kinase, DAG,Kinase, Diacylglycerol,Kinase, Diglyceride,alpha, DGK,beta, DGK,delta, DGK,gamma, DGK

Related Publications

W R Bishop, and R M Bell
January 1987, Methods in enzymology,
W R Bishop, and R M Bell
March 1991, Cancer research,
W R Bishop, and R M Bell
March 1986, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!