Comparison of Er,Cr:YSGG Laser Handpieces for Class II Preparation and Microleakage of Silorane- or Methacrylate-Based Composite Restorations. 2018

Esra Ergin, and Fatma Dilsad Oz, and Sevil Gurgan
Department of Restorative Dentistry, Faculty of Dentistry, Hacettepe University , Ankara, Turkey .

OBJECTIVE The aim of this study was to evaluate the influence of cavity preparation with different Er,Cr:YSGG laser handpieces on microleakage of different posterior composite restorations. METHODS Fifty-four extracted intact human premolars were randomly assigned to three groups according to cavity preparation method: Bur Group: high-speed diamond bur (Diatech), MD Group: Er,Cr:YSGG laser Waterlase MD handpiece (Biolase Millennium II), and Turbo Group: Er,Cr:YSGG laser Waterlase MD TURBO handpiece (Biolase Millennium II). One hundred eight Class II slot cavities were prepared on the mesial and distal proximal surfaces of each tooth, and the cavity preparation times required were determined. The groups were then subdivided according to the restorative systems used (n = 12): a conventional methacrylate-based microhybrid composite (Filtek P60+Adper Single Bond 2/3M); a silorane-based resin composite (Filtek Silorane+Silorane System Adhesive/3M); and a nanohybrid methacrylate-based composite (Kalore+G-Bond/GC). The restorative systems were applied according to the manufacturers' recommendations. Following thermocycling (X5000; 5°C-55°C), the teeth were coated with nail varnish except the restoration margins, immersed in 0.5% basic fuchsin dye solution, and sectioned in a mesiodistal direction. Dye penetration was evaluated under a light microscope for occlusal and cervical margins. Data were analyzed with one-way ANOVA and chi-square tests (p < 0.05). RESULTS The cavity preparation time (mean ± SD) required for Bur, MD, and Turbo group was 31.25 ± 3.82, 222.94 ± 15.85, and 92.5 ± 7.42 sec, respectively, and the differences among the groups were statistically significant (p < 0.05). Comparing the occlusal and cervical microleakage scores, no statistically significant differences were found among the groups and subgroups (p > 0.05). CONCLUSIONS Er;Cr:YSGG laser cavity preparation with the Turbo handpiece needed shorter time than the MD handpiece, although it needed longer time than the conventional diamond bur. The use of different handpieces of Er,Cr:YSGG laser did not differ from conventional preparation with diamond bur in terms of microleakage with the tested methacrylate- and silorane-based posterior composite restorative systems.

UI MeSH Term Description Entries
D008689 Methacrylates Acrylic acids or acrylates which are substituted in the C-2 position with a methyl group. Methacrylate
D003188 Composite Resins Synthetic resins, containing an inert filler, that are widely used in dentistry. Composite Resin,Resin, Composite,Resins, Composite
D003737 Dental Cavity Preparation An operation in which carious material is removed from teeth and biomechanically correct forms are established in the teeth to receive and retain restorations. A constant requirement is provision for prevention of failure of the restoration through recurrence of decay or inadequate resistance to applied stresses. (Boucher's Clinical Dental Terminology, 4th ed, p239-40) Cavity Preparation, Dental,Cavity Preparations, Dental,Dental Cavity Preparations,Preparation, Dental Cavity,Preparations, Dental Cavity
D003763 Dental Leakage The seepage of fluids, debris, and micro-organisms between the walls of a prepared dental cavity and the restoration. Dental Leakages,Leakage, Dental,Leakages, Dental
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001641 Bicuspid One of the eight permanent teeth, two on either side in each jaw, between the canines (CUSPID) and the molars (MOLAR), serving for grinding and crushing food. The upper have two cusps (bicuspid) but the lower have one to three. (Jablonski, Dictionary of Dentistry, 1992, p822) Premolar,Bicuspids,Premolars
D046509 Tissue Culture Techniques A technique for maintaining or growing TISSUE in vitro, usually by DIFFUSION, perifusion, or PERFUSION. The tissue is cultured directly after removal from the host without being dispersed for cell culture. Culture Technique, Tissue,Culture Techniques, Tissue,Tissue Culture Technique
D053844 Lasers, Solid-State Lasers which use a solid, as opposed to a liquid or gas, as the lasing medium. Common materials used are crystals, such as YAG (YTTRIUM aluminum garnet); alexandrite; and CORUNDUM, doped with a rare earth element such as a NEODYMIUM; ERBIUM; or HOLMIUM. The output is sometimes additionally modified by addition of non-linear optical materials such as potassium titanyl phosphate crystal, which for example is used with neodymium YAG lasers to convert the output light to the visible range. Alexandrite Laser,Alexandrite Lasers,Diode Pumped Solid State Laser,Diode Pumped Solid State Lasers,Er-YAG Laser,Er-YAG Lasers,Erbium Doped Yttrium Aluminum Garnet Laser,Erbium YAG Laser,Erbium-Doped Yttrium Aluminum Garnet Laser,Erbium-Doped Yttrium Aluminum Garnet Lasers,Ho YAG Laser,Ho YAG Lasers,Holmium Doped Yttrium Aluminum Garnet Lasers,Holmium Laser,Holmium-YAG Laser,Holmium-YAG Lasers,KTP Laser,Laser, Nd-YAG,Nd-YAG Laser,Nd-YAG Lasers,Neodymium-Doped Yttrium Aluminum Garnet Laser,Neodymium-Doped Yttrium Aluminum Garnet Lasers,Potassium Titanyl Phosphate Laser,Ruby Laser,Ruby Lasers,Solid-State Laser,YAG Laser,YAG Lasers,YLF Laser,YLF Lasers,YSGG Laser,YSGG Lasers,Yttrium Aluminum Garnet Laser,Yttrium-Lithium-Fluoride Laser,Yttrium-Lithium-Fluoride Lasers,Yttrium-Scandium-Gallium Garnet Laser,Yttrium-Scandium-Gallium Garnet Lasers,Erbium YAG Lasers,Holmium Lasers,KTP Lasers,Lasers, Alexandrite,Lasers, Diode Pumped Solid State,Lasers, Er-YAG,Lasers, Erbium-Doped Yttrium Aluminum Garnet,Lasers, Ho-YAG,Lasers, Holmium Doped Yttrium Aluminum Garnet,Lasers, Nd-YAG,Lasers, Neodymium-Doped Yttrium Aluminum Garnet,Lasers, Ruby,Lasers, YAG,Lasers, Yttrium Aluminum Garnet,Lasers, Yttrium-Lithium-Fluoride,Potassium Titanyl Phosphate Lasers,Yttrium Aluminum Garnet Lasers,Er YAG Laser,Er YAG Lasers,Erbium Doped Yttrium Aluminum Garnet Lasers,Ho-YAG Laser,Ho-YAG Lasers,Holmium YAG Laser,Holmium YAG Lasers,Laser, Alexandrite,Laser, Er-YAG,Laser, Erbium YAG,Laser, Ho YAG,Laser, Ho-YAG,Laser, Holmium,Laser, Holmium-YAG,Laser, KTP,Laser, Nd YAG,Laser, Ruby,Laser, Solid-State,Laser, YAG,Laser, YLF,Laser, YSGG,Laser, Yttrium-Lithium-Fluoride,Laser, Yttrium-Scandium-Gallium Garnet,Lasers, Er YAG,Lasers, Erbium Doped Yttrium Aluminum Garnet,Lasers, Erbium YAG,Lasers, Ho YAG,Lasers, Holmium,Lasers, Holmium-YAG,Lasers, KTP,Lasers, Nd YAG,Lasers, Neodymium Doped Yttrium Aluminum Garnet,Lasers, Solid State,Lasers, YLF,Lasers, YSGG,Lasers, Yttrium Lithium Fluoride,Lasers, Yttrium-Scandium-Gallium Garnet,Nd YAG Laser,Nd YAG Lasers,Neodymium Doped Yttrium Aluminum Garnet Laser,Neodymium Doped Yttrium Aluminum Garnet Lasers,Solid State Laser,Solid-State Lasers,YAG Laser, Erbium,YAG Laser, Ho,YAG Lasers, Erbium,YAG Lasers, Ho,Yttrium Lithium Fluoride Laser,Yttrium Lithium Fluoride Lasers,Yttrium Scandium Gallium Garnet Laser,Yttrium Scandium Gallium Garnet Lasers
D062047 Silorane Resins Polymeric resins containing a combination of SILOXANES and OXIRANES. Silorane System Adhesive,Siloranes,Adhesive, Silorane System,Adhesives, Silorane System,Resin, Silorane,Resins, Silorane,Silorane,Silorane Resin,Silorane System Adhesives,System Adhesive, Silorane,System Adhesives, Silorane
D028022 Low-Level Light Therapy Treatment using irradiation with light of low power intensity so that the effects are a response to the light and not due to heat. A variety of light sources, especially low-power lasers are used. LLLT,Laser Biostimulation,Laser Irradiation, Low-Power,Laser Therapy, Low-Level,Photobiomodulation,Laser Phototherapy,Laser Therapy, Low-Power,Low-Level Laser Therapy,Low-Power Laser Irradiation,Low-Power Laser Therapy,Photobiomodulation Therapy,Biostimulation, Laser,Irradiation, Low-Power Laser,Laser Irradiation, Low Power,Laser Therapies, Low-Level,Laser Therapies, Low-Power,Laser Therapy, Low Level,Laser Therapy, Low Power,Light Therapies, Low-Level,Light Therapy, Low-Level,Low Level Laser Therapy,Low Level Light Therapy,Low Power Laser Irradiation,Low Power Laser Therapy,Low-Level Laser Therapies,Low-Level Light Therapies,Low-Power Laser Therapies,Photobiomodulation Therapies,Photobiomodulations,Phototherapy, Laser,Therapies, Low-Level Light,Therapies, Photobiomodulation,Therapy, Low-Level Light,Therapy, Photobiomodulation

Related Publications

Esra Ergin, and Fatma Dilsad Oz, and Sevil Gurgan
August 2012, Clinical oral investigations,
Esra Ergin, and Fatma Dilsad Oz, and Sevil Gurgan
September 2013, Lasers in medical science,
Esra Ergin, and Fatma Dilsad Oz, and Sevil Gurgan
January 2001, Lasers in surgery and medicine,
Esra Ergin, and Fatma Dilsad Oz, and Sevil Gurgan
August 2010, Photomedicine and laser surgery,
Esra Ergin, and Fatma Dilsad Oz, and Sevil Gurgan
July 2010, Journal of conservative dentistry : JCD,
Esra Ergin, and Fatma Dilsad Oz, and Sevil Gurgan
June 2008, Australian dental journal,
Esra Ergin, and Fatma Dilsad Oz, and Sevil Gurgan
August 2014, Restorative dentistry & endodontics,
Esra Ergin, and Fatma Dilsad Oz, and Sevil Gurgan
January 2015, Journal of international oral health : JIOH,
Copied contents to your clipboard!