MEK/ERK-PATHWAY IS REQUIRED TO MAINTAIN CYTOPROTECTIVE AUTOPHAGY PROCESS IN IRRADIATED E1A+cHa-Ras TRANSFORMANTS. 2016

E Yu Kochetkova, and G I Blinova, and S G Zubova, and T V Bykova, and V A Pospelov, and T V Pospelova

Autophagy is a conservative process of misfolded protein and damaged organelle degradation that serves to support cellular viability. Autophagy is often induced in response to stress, DNA damage, retinoids, starvation and growth factor withdrawal. The aim of the present work was to study autophagic response of E1A+cHa-Ras-transformed cells to irradiation and to analyze the role of MEK/ERK pathway in regulation of autophagy induced by irradiation. MEK/ERK suppression has been found to decrease the viability of irradiated cells. Inhibition of MEK/ERK pathway leads to the changes in the autophagy induced by irradiation connected with disturbances of final stages followed by accumulation of adaptor protein p62/SQSTM1 in autophagic cavities within cytoplasm. Thus, the data obtained allow to suggest that active MEK/ERK pathway is required to support, the cytoprotective autophagy which is induced in response to irradiation of transformed E1A+cHa-ras cells.

UI MeSH Term Description Entries
D011905 Genes, ras Family of retrovirus-associated DNA sequences (ras) originally isolated from Harvey (H-ras, Ha-ras, rasH) and Kirsten (K-ras, Ki-ras, rasK) murine sarcoma viruses. Ras genes are widely conserved among animal species and sequences corresponding to both H-ras and K-ras genes have been detected in human, avian, murine, and non-vertebrate genomes. The closely related N-ras gene has been detected in human neuroblastoma and sarcoma cell lines. All genes of the family have a similar exon-intron structure and each encodes a p21 protein. Ha-ras Genes,Ki-ras Genes,N-ras Genes,c-Ha-ras Genes,c-Ki-ras Genes,c-N-ras Genes,ras Genes,v-Ha-ras Genes,v-Ki-ras Genes,H-ras Genes,H-ras Oncogenes,Ha-ras Oncogenes,K-ras Genes,K-ras Oncogenes,Ki-ras Oncogenes,N-ras Oncogenes,c-H-ras Genes,c-H-ras Proto-Oncogenes,c-Ha-ras Proto-Oncogenes,c-K-ras Genes,c-K-ras Proto-Oncogenes,c-Ki-ras Proto-Oncogenes,c-N-ras Proto-Oncogenes,ras Oncogene,v-H-ras Genes,v-H-ras Oncogenes,v-Ha-ras Oncogenes,v-K-ras Genes,v-K-ras Oncogenes,v-Ki-ras Oncogenes,Gene, Ha-ras,Gene, Ki-ras,Gene, v-Ha-ras,Gene, v-Ki-ras,Genes, Ha-ras,Genes, Ki-ras,Genes, N-ras,Genes, v-Ha-ras,Genes, v-Ki-ras,H ras Genes,H ras Oncogenes,H-ras Gene,H-ras Oncogene,Ha ras Genes,Ha ras Oncogenes,Ha-ras Gene,Ha-ras Oncogene,K ras Genes,K ras Oncogenes,K-ras Gene,K-ras Oncogene,Ki ras Genes,Ki ras Oncogenes,Ki-ras Gene,Ki-ras Oncogene,N ras Genes,N ras Oncogenes,N-ras Gene,N-ras Oncogene,c H ras Genes,c H ras Proto Oncogenes,c Ha ras Genes,c Ha ras Proto Oncogenes,c K ras Genes,c K ras Proto Oncogenes,c Ki ras Genes,c Ki ras Proto Oncogenes,c N ras Genes,c N ras Proto Oncogenes,c-H-ras Gene,c-H-ras Proto-Oncogene,c-Ha-ras Gene,c-Ha-ras Proto-Oncogene,c-K-ras Gene,c-K-ras Proto-Oncogene,c-Ki-ras Gene,c-Ki-ras Proto-Oncogene,c-N-ras Gene,c-N-ras Proto-Oncogene,ras Gene,ras Oncogenes,v H ras Genes,v H ras Oncogenes,v Ha ras Genes,v Ha ras Oncogenes,v K ras Genes,v K ras Oncogenes,v Ki ras Genes,v Ki ras Oncogenes,v-H-ras Gene,v-H-ras Oncogene,v-Ha-ras Gene,v-Ha-ras Oncogene,v-K-ras Gene,v-K-ras Oncogene,v-Ki-ras Gene,v-Ki-ras Oncogene
D002461 Cell Line, Transformed Eukaryotic cell line obtained in a quiescent or stationary phase which undergoes conversion to a state of unregulated growth in culture, resembling an in vitro tumor. It occurs spontaneously or through interaction with viruses, oncogenes, radiation, or drugs/chemicals. Transformed Cell Line,Cell Lines, Transformed,Transformed Cell Lines
D000071456 Sequestosome-1 Protein A multidomain protein that is highly conserved among multicellular organisms. It contains a ZZ-type ZINC FINGER domain, C-terminal UBIQUITIN - associated (UBA) domain, and interacts with many other signaling proteins and enzymes including, atypical PROTEIN KINASE C; TNF RECEPTOR-ASSOCIATED FACTOR 6; subunits of the mTORC1 complex, and CASPASE-8. It functions in AUTOPHAGY as a receptor for the degradation of ubiquitinated substrates, and to co-ordinate signaling in response to OXIDATIVE STRESS. EBI3-Associated Protein of 60 KDa,EBIAP Protein,Phosphotyrosine-Independent Ligand For The Lck SH2 Domain Of 62 Kda,Ubiquitin-Binding Protein p62,EBI3 Associated Protein of 60 KDa,Phosphotyrosine Independent Ligand For The Lck SH2 Domain Of 62 Kda,Sequestosome 1 Protein,Ubiquitin Binding Protein p62
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001343 Autophagy The segregation and degradation of various cytoplasmic constituents via engulfment by MULTIVESICULAR BODIES; VACUOLES; or AUTOPHAGOSOMES and their digestion by LYSOSOMES. It plays an important role in BIOLOGICAL METAMORPHOSIS and in the removal of bone by OSTEOCLASTS. Defective autophagy is associated with various diseases, including NEURODEGENERATIVE DISEASES and cancer. Autophagocytosis,ER-Phagy,Lipophagy,Nucleophagy,Reticulophagy,Ribophagy,Autophagy, Cellular,Cellular Autophagy,ER Phagy
D014965 X-Rays Penetrating electromagnetic radiation emitted when the inner orbital electrons of an atom are excited and release radiant energy. X-ray wavelengths range from 1 pm to 10 nm. Hard X-rays are the higher energy, shorter wavelength X-rays. Soft x-rays or Grenz rays are less energetic and longer in wavelength. The short wavelength end of the X-ray spectrum overlaps the GAMMA RAYS wavelength range. The distinction between gamma rays and X-rays is based on their radiation source. Grenz Ray,Grenz Rays,Roentgen Ray,Roentgen Rays,X Ray,X-Ray,Xray,Radiation, X,X-Radiation,Xrays,Ray, Grenz,Ray, Roentgen,Ray, X,Rays, Grenz,Rays, Roentgen,Rays, X,X Radiation,X Rays,X-Radiations
D050881 E1A-Associated p300 Protein A member of the p300-CBP transcription factors that was originally identified as a binding partner for ADENOVIRUS E1A PROTEINS. p300 E1A-Associated Coactivator,E1A Associated p300 Protein,E1A-Associated Coactivator, p300,p300 E1A Associated Coactivator,p300 Protein, E1A-Associated
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D019610 Cytoprotection The process by which chemical compounds provide protection to cells against harmful agents. Cell Protection,Protection, Cell
D020935 MAP Kinase Signaling System An intracellular signaling system involving the mitogen-activated protein kinase cascades (three-membered protein kinase cascades). Various upstream activators, which act in response to extracellular stimuli, trigger the cascades by activating the first member of a cascade, MAP KINASE KINASE KINASES; (MAPKKKs). Activated MAPKKKs phosphorylate MITOGEN-ACTIVATED PROTEIN KINASE KINASES which in turn phosphorylate the MITOGEN-ACTIVATED PROTEIN KINASES; (MAPKs). The MAPKs then act on various downstream targets to affect gene expression. In mammals, there are several distinct MAP kinase pathways including the ERK (extracellular signal-regulated kinase) pathway, the SAPK/JNK (stress-activated protein kinase/c-jun kinase) pathway, and the p38 kinase pathway. There is some sharing of components among the pathways depending on which stimulus originates activation of the cascade. MAP Kinase Cascade,MAP Kinase Module,MAP Kinase Signaling Cascade,MAP Kinase Signaling Pathway,MAP Kinase Signaling Pathways,ERK Pathway,ERK Signal Tranduction Pathway,ERK1 and ERK2 Pathway,ERK1-2 Pathway,JNK Pathway,JNK Signaling Pathway,MAP Kinase Modules,MAP Kinase Signaling Cascades,MEK-ERK Pathway,p38 Kinase Pathway,p38 Kinase Signaling Pathway,Cascade, MAP Kinase,ERK Pathways,ERK1 2 Pathway,ERK1-2 Pathways,JNK Pathways,JNK Signaling Pathways,Kinase Cascade, MAP,Kinase Pathway, p38,Kinase Pathways, p38,MAP Kinase Cascades,MEK ERK Pathway,MEK-ERK Pathways,Module, MAP Kinase,Pathway, ERK,Pathway, ERK1-2,Pathway, JNK,Pathway, JNK Signaling,Pathway, MEK-ERK,Pathway, p38 Kinase,Pathways, ERK,Pathways, ERK1-2,Pathways, JNK,Pathways, JNK Signaling,Pathways, MEK-ERK,Pathways, p38 Kinase,Signaling Pathway, JNK,Signaling Pathways, JNK,p38 Kinase Pathways

Related Publications

E Yu Kochetkova, and G I Blinova, and S G Zubova, and T V Bykova, and V A Pospelov, and T V Pospelova
January 2016, Tsitologiia,
E Yu Kochetkova, and G I Blinova, and S G Zubova, and T V Bykova, and V A Pospelov, and T V Pospelova
January 2016, Tsitologiia,
E Yu Kochetkova, and G I Blinova, and S G Zubova, and T V Bykova, and V A Pospelov, and T V Pospelova
December 2009, BMC cancer,
E Yu Kochetkova, and G I Blinova, and S G Zubova, and T V Bykova, and V A Pospelov, and T V Pospelova
February 2008, Journal of cellular biochemistry,
E Yu Kochetkova, and G I Blinova, and S G Zubova, and T V Bykova, and V A Pospelov, and T V Pospelova
April 2014, The Journal of general virology,
E Yu Kochetkova, and G I Blinova, and S G Zubova, and T V Bykova, and V A Pospelov, and T V Pospelova
December 2009, Cell metabolism,
E Yu Kochetkova, and G I Blinova, and S G Zubova, and T V Bykova, and V A Pospelov, and T V Pospelova
March 2017, Oncology letters,
E Yu Kochetkova, and G I Blinova, and S G Zubova, and T V Bykova, and V A Pospelov, and T V Pospelova
August 2005, Nature cell biology,
E Yu Kochetkova, and G I Blinova, and S G Zubova, and T V Bykova, and V A Pospelov, and T V Pospelova
January 1999, Tsitologiia,
E Yu Kochetkova, and G I Blinova, and S G Zubova, and T V Bykova, and V A Pospelov, and T V Pospelova
December 2015, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases,
Copied contents to your clipboard!