Control of Germinal Center Responses by T-Follicular Regulatory Cells. 2018

James B Wing, and Murat Tekgüç, and Shimon Sakaguchi
Laboratory of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Suita, Japan.

Regulatory T-cells (Treg cells), expressing the transcription factor Foxp3, have an essential role in the control of immune homeostasis. In order to control diverse types of immune responses Treg cells must themselves show functional heterogeneity to control different types of immune responses. Recent advances have made it clear that Treg cells are able to mirror the homing capabilities of known T-helper subtypes such as Th1, Th2, Th17, and T-follicular helper cells (Tfh), allowing them to travel to the sites of inflammation and deliver suppression in situ. One of the more recent discoveries in this category is the description of T-follicular regulatory (Tfr) cells, a specialized subset of Treg cells that control Tfh and resulting antibody responses. In this review we will discuss recent advances in our understanding of Tfr biology and the role of both Tfr and activated extra-follicular Tregs (eTreg) in the control of humoral immunity.

UI MeSH Term Description Entries
D007111 Immunity, Cellular Manifestations of the immune response which are mediated by antigen-sensitized T-lymphocytes via lymphokines or direct cytotoxicity. This takes place in the absence of circulating antibody or where antibody plays a subordinate role. Cell-Mediated Immunity,Cellular Immune Response,Cell Mediated Immunity,Cell-Mediated Immunities,Cellular Immune Responses,Cellular Immunities,Cellular Immunity,Immune Response, Cellular,Immune Responses, Cellular,Immunities, Cell-Mediated,Immunities, Cellular,Immunity, Cell-Mediated,Response, Cellular Immune
D004198 Disease Susceptibility A constitution or condition of the body which makes the tissues react in special ways to certain extrinsic stimuli and thus tends to make the individual more than usually susceptible to certain diseases. Diathesis,Susceptibility, Disease,Diatheses,Disease Susceptibilities,Susceptibilities, Disease
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D015551 Autoimmunity Process whereby the immune system reacts against the body's own tissues. Autoimmunity may produce or be caused by AUTOIMMUNE DISEASES. Autoimmune Response,Autoimmune Responses,Autoimmunities
D016176 T-Lymphocyte Subsets A classification of T-lymphocytes, especially into helper/inducer, suppressor/effector, and cytotoxic subsets, based on structurally or functionally different populations of cells. T-Cell Subset,T-Cell Subsets,T-Lymphocyte Subset,Subset, T-Cell,Subset, T-Lymphocyte,Subsets, T-Cell,Subsets, T-Lymphocyte,T Cell Subset,T Cell Subsets,T Lymphocyte Subset,T Lymphocyte Subsets
D050378 T-Lymphocytes, Regulatory CD4-positive T cells that inhibit immunopathology or autoimmune disease in vivo. They inhibit the immune response by influencing the activity of other cell types. Regulatory T-cells include naturally occurring CD4+CD25+ cells, IL-10 secreting Tr1 cells, and Th3 cells. Regulatory T Cell,Regulatory T-Cell,Regulatory T-Lymphocyte,Regulatory T-Lymphocytes,Suppressor T-Lymphocytes, Naturally-Occurring,T-Cells, Regulatory,Th3 Cells,Tr1 Cell,Treg Cell,Regulatory T-Cells,Suppressor T-Cells, Naturally-Occurring,Tr1 Cells,Treg Cells,Cell, Regulatory T,Cell, Th3,Cell, Tr1,Cell, Treg,Cells, Regulatory T,Cells, Th3,Cells, Tr1,Cells, Treg,Naturally-Occurring Suppressor T-Cell,Naturally-Occurring Suppressor T-Cells,Naturally-Occurring Suppressor T-Lymphocyte,Naturally-Occurring Suppressor T-Lymphocytes,Regulatory T Cells,Regulatory T Lymphocyte,Regulatory T Lymphocytes,Suppressor T Cells, Naturally Occurring,Suppressor T Lymphocytes, Naturally Occurring,Suppressor T-Cell, Naturally-Occurring,Suppressor T-Lymphocyte, Naturally-Occurring,T Cell, Regulatory,T Cells, Regulatory,T Lymphocytes, Regulatory,T-Cell, Naturally-Occurring Suppressor,T-Cells, Naturally-Occurring Suppressor,T-Lymphocyte, Regulatory,Th3 Cell
D056724 Immunity, Humoral Antibody-mediated immune response. Humoral immunity is brought about by ANTIBODY FORMATION, resulting from TH2 CELLS activating B-LYMPHOCYTES, followed by COMPLEMENT ACTIVATION. Humoral Immune Response,Humoral Immune Responses,Humoral Immunity,Immune Response, Humoral,Immune Responses, Humoral,Response, Humoral Immune

Related Publications

James B Wing, and Murat Tekgüç, and Shimon Sakaguchi
January 2021, Frontiers in immunology,
James B Wing, and Murat Tekgüç, and Shimon Sakaguchi
January 2018, Frontiers in immunology,
James B Wing, and Murat Tekgüç, and Shimon Sakaguchi
July 2011, Nature medicine,
James B Wing, and Murat Tekgüç, and Shimon Sakaguchi
November 2011, Journal of immunology (Baltimore, Md. : 1950),
James B Wing, and Murat Tekgüç, and Shimon Sakaguchi
January 2018, Frontiers in immunology,
James B Wing, and Murat Tekgüç, and Shimon Sakaguchi
July 2023, Journal of immunology (Baltimore, Md. : 1950),
James B Wing, and Murat Tekgüç, and Shimon Sakaguchi
January 2020, Cell reports,
James B Wing, and Murat Tekgüç, and Shimon Sakaguchi
January 2018, Frontiers in immunology,
Copied contents to your clipboard!