An EPR and electron nuclear double resonance investigation of carbon monoxide binding to hydrogenase I (bidirectional) from Clostridium pasteurianum W5. 1986

J Telser, and M J Benecky, and M W Adams, and L E Mortenson, and B M Hoffman

Previous Mössbauer and electron nuclear double resonance (ENDOR) studies of oxidized hydrogenase I (bidirectional) from Clostridium pasteurianum W5 demonstrated that this enzyme contains two diamagnetic [4Fe-4S]2+ clusters and an iron-sulfur center of unknown structure and composition that is characterized by its novel Mössbauer and ENDOR properties. In the present study we combine ENDOR and EPR measurements to show that the novel cluster contains 3-4 iron atoms. In addition, we have used EPR and ENDOR spectroscopies to investigate the effect of binding the competitive inhibitor carbon monoxide to oxidized hydrogenase I, using 13C-labeled CO and enzyme isotopically enriched in 57Fe. Treatment of oxidized enzyme with CO causes the g-tensor of the paramagnetic center to change from rhombic to axial symmetry. The observation of a 13C signal by ENDOR spectroscopy and analysis of the EPR broadening show that a single CO covalently binds to the paramagnetic center. The 13C hyperfine coupling constant (Ac approximately equal to 21 MHz) is within the range observed for inorganic iron-carbonyl clusters. The observation of 57Fe ENDOR signals from two types of iron site ([A1c] approximately 30-34 MHz; [A2c] approximately 6 MHz) and resolved 57Fe hyperfine interactions in the EPR spectrum from two nuclei characterized by [A1c] confirm that the iron-sulfur cluster remains intact upon CO coordination, but show that CO binding greatly changes the 57Fe hyperfine coupling constants.

UI MeSH Term Description Entries
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D002248 Carbon Monoxide Carbon monoxide (CO). A poisonous colorless, odorless, tasteless gas. It combines with hemoglobin to form carboxyhemoglobin, which has no oxygen carrying capacity. The resultant oxygen deprivation causes headache, dizziness, decreased pulse and respiratory rates, unconsciousness, and death. (From Merck Index, 11th ed) Monoxide, Carbon
D003013 Clostridium A genus of motile or nonmotile gram-positive bacteria of the family Clostridiaceae. Many species have been identified with some being pathogenic. They occur in water, soil, and in the intestinal tract of humans and lower animals.
D004578 Electron Spin Resonance Spectroscopy A technique applicable to the wide variety of substances which exhibit paramagnetism because of the magnetic moments of unpaired electrons. The spectra are useful for detection and identification, for determination of electron structure, for study of interactions between molecules, and for measurement of nuclear spins and moments. (From McGraw-Hill Encyclopedia of Science and Technology, 7th edition) Electron nuclear double resonance (ENDOR) spectroscopy is a variant of the technique which can give enhanced resolution. Electron spin resonance analysis can now be used in vivo, including imaging applications such as MAGNETIC RESONANCE IMAGING. ENDOR,Electron Nuclear Double Resonance,Electron Paramagnetic Resonance,Paramagnetic Resonance,Electron Spin Resonance,Paramagnetic Resonance, Electron,Resonance, Electron Paramagnetic,Resonance, Electron Spin,Resonance, Paramagnetic
D006864 Hydrogenase An enzyme found in bacteria. It catalyzes the reduction of FERREDOXIN and other substances in the presence of molecular hydrogen and is involved in the electron transport of bacterial photosynthesis. Ferredoxin Hydrogenase,H2-Oxidizing Hydrogenase,Hydrogenlyase,H2 Oxidizing Hydrogenase,Hydrogenase, Ferredoxin,Hydrogenase, H2-Oxidizing

Related Publications

J Telser, and M J Benecky, and M W Adams, and L E Mortenson, and B M Hoffman
December 1984, The Journal of biological chemistry,
J Telser, and M J Benecky, and M W Adams, and L E Mortenson, and B M Hoffman
June 1971, Biochemistry,
J Telser, and M J Benecky, and M W Adams, and L E Mortenson, and B M Hoffman
December 1974, Biochimica et biophysica acta,
J Telser, and M J Benecky, and M W Adams, and L E Mortenson, and B M Hoffman
March 1971, Biochimica et biophysica acta,
J Telser, and M J Benecky, and M W Adams, and L E Mortenson, and B M Hoffman
December 1975, Proceedings of the National Academy of Sciences of the United States of America,
J Telser, and M J Benecky, and M W Adams, and L E Mortenson, and B M Hoffman
July 1987, The Journal of biological chemistry,
J Telser, and M J Benecky, and M W Adams, and L E Mortenson, and B M Hoffman
November 1972, Proceedings of the National Academy of Sciences of the United States of America,
J Telser, and M J Benecky, and M W Adams, and L E Mortenson, and B M Hoffman
October 1991, Biochemistry,
J Telser, and M J Benecky, and M W Adams, and L E Mortenson, and B M Hoffman
March 1989, The Journal of biological chemistry,
J Telser, and M J Benecky, and M W Adams, and L E Mortenson, and B M Hoffman
October 1999, Biochemistry,
Copied contents to your clipboard!