Phosphoprotein NS of vesicular stomatitis virus: phosphorylated states and transcriptional activities of intracellular and virion forms. 1986

P S Masters, and A K Banerjee

The phosphorylation and transcriptional competence of the free cytoplasmic form and the virion form of NS protein of vesicular stomatitis virus (VSV-Indiana/Mudd-Summers) were compared. NS protein is known to exist in two distinct phosphorylated states, NS1 and NS2, that are resolvable by gel electrophoresis. In vitro phosphorylation of virion NS protein by the viral L protein-associated protein kinase resulted in the phosphorylation of both NS1 and NS2. However, in the presence of the N-RNA complex, the NS2 form was preferentially phosphorylated. A cellular protein kinase activity, found in cytoplasmic extracts from VSV-infected or uninfected cells, preferentially phosphorylated NS1, which did not undergo dephosphorylation by cellular phosphatase and also did not convert to NS2. In contrast, the virion or cellular NS2 which had been phosphorylated in vivo or in vitro could be rapidly dephosphorylated by a cellular phosphatase. Cytoplasmic NS protein was found to be fully capable of binding to the virion N-RNA template, and in conjunction with L protein, it participated in synthesis of the leader RNA and five mRNA species of VSV. Moreover, under these conditions, neither cellular phosphatase nor cellular ribonuclease was able to bind to reconstituted nucleocapsids. Binding of cytoplasmic NS to the virion N-RNA template in the presence of L protein resulted in a large and preferential enhancement of NS2 phosphorylation. A protein kinase activity, which phosphorylated NS protein in vitro, was found to be associated with the N-RNA template. This activity appeared to be very tightly bound to N-RNA and exhibited absolute specificity for NS protein of the homologous serotype.

UI MeSH Term Description Entries
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011494 Protein Kinases A family of enzymes that catalyze the conversion of ATP and a protein to ADP and a phosphoprotein. Protein Kinase,Kinase, Protein,Kinases, Protein
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D003593 Cytoplasm The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990) Protoplasm,Cytoplasms,Protoplasms
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012324 RNA-Dependent RNA Polymerase An enzyme that catalyses RNA-template-directed extension of the 3'- end of an RNA strand by one nucleotide at a time, and can initiate a chain de novo. (Enzyme Nomenclature, 1992, p293) Nucleoside-Triphosphate:RNA Nucleotidyltransferase (RNA-directed),RNA Replicase,RNA-Dependent RNA Replicase,RNA-Directed RNA Polymerase,RNA Dependent RNA Polymerase,RNA Dependent RNA Replicase,RNA Directed RNA Polymerase,RNA Polymerase, RNA-Dependent,RNA Polymerase, RNA-Directed,RNA Replicase, RNA-Dependent,Replicase, RNA,Replicase, RNA-Dependent RNA
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D012367 RNA, Viral Ribonucleic acid that makes up the genetic material of viruses. Viral RNA
D013698 Templates, Genetic Macromolecular molds for the synthesis of complementary macromolecules, as in DNA REPLICATION; GENETIC TRANSCRIPTION of DNA to RNA, and GENETIC TRANSLATION of RNA into POLYPEPTIDES. Genetic Template,Genetic Templates,Template, Genetic

Related Publications

P S Masters, and A K Banerjee
June 1985, Journal of virology,
P S Masters, and A K Banerjee
July 1985, The Journal of biological chemistry,
P S Masters, and A K Banerjee
February 1980, Journal of virology,
P S Masters, and A K Banerjee
November 1984, The Journal of biological chemistry,
P S Masters, and A K Banerjee
January 1976, Current topics in microbiology and immunology,
Copied contents to your clipboard!