Combined Immunofluorescence, RNA FISH, and DNA FISH in Preimplantation Mouse Embryos. 2018

Ikuhiro Okamoto
Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan. iokamoto@anat2.med.kyoto-u.ac.jp.

Transcriptional and epigenetic dynamics of the genome occur during early development in mammals. It has been difficult to study these dynamics due to the limitation of materials and the difficulty of handling. In this chapter, we describe our attempt to apply a combination of immunofluorescence (IF), and RNA and DNA fluorescent in situ hybridization (FISH) in preimplantation mouse embryos. We have concentrated on refining these techniques to study the dynamics of X chromosome inactivation in mouse embryos. The techniques and general underlying principles described here should be applicable to other mammals of interest.

UI MeSH Term Description Entries
D001755 Blastocyst A post-MORULA preimplantation mammalian embryo that develops from a 32-cell stage into a fluid-filled hollow ball of over a hundred cells. A blastocyst has two distinctive tissues. The outer layer of trophoblasts gives rise to extra-embryonic tissues. The inner cell mass gives rise to the embryonic disc and eventual embryo proper. Embryo, Preimplantation,Blastocysts,Embryos, Preimplantation,Preimplantation Embryo,Preimplantation Embryos
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D017404 In Situ Hybridization, Fluorescence A type of IN SITU HYBRIDIZATION in which target sequences are stained with fluorescent dye so their location and size can be determined using fluorescence microscopy. This staining is sufficiently distinct that the hybridization signal can be seen both in metaphase spreads and in interphase nuclei. FISH Technique,Fluorescent in Situ Hybridization,Hybridization in Situ, Fluorescence,FISH Technic,Hybridization in Situ, Fluorescent,In Situ Hybridization, Fluorescent,FISH Technics,FISH Techniques,Technic, FISH,Technics, FISH,Technique, FISH,Techniques, FISH
D049951 X Chromosome Inactivation A dosage compensation process occurring at an early embryonic stage in mammalian development whereby, at random, one X CHROMOSOME of the pair is repressed in the somatic cells of females. X Inactivation,Lyon Hypothesis,Lyonization,X-Inactivation,Chromosome Inactivation, X,Hypothesis, Lyon,Inactivation, X,Inactivation, X Chromosome,X Inactivations
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D057890 Epigenomics The systematic study of the global gene expression changes due to EPIGENETIC PROCESSES and not due to DNA base sequence changes. Epigenetics,Epigenetic,Epigenomic
D062085 RNA, Long Noncoding A class of untranslated RNA molecules that are typically greater than 200 nucleotides in length and do not code for proteins. Members of this class have been found to play roles in transcriptional regulation, post-transcriptional processing, CHROMATIN REMODELING, and in the epigenetic control of chromatin. LincRNA,RNA, Long Untranslated,LINC RNA,LincRNAs,Long Intergenic Non-Protein Coding RNA,Long Non-Coding RNA,Long Non-Protein-Coding RNA,Long Noncoding RNA,Long ncRNA,Long ncRNAs,RNA, Long Non-Translated,lncRNA,Long Intergenic Non Protein Coding RNA,Long Non Coding RNA,Long Non Protein Coding RNA,Long Non-Translated RNA,Long Untranslated RNA,Non-Coding RNA, Long,Non-Protein-Coding RNA, Long,Non-Translated RNA, Long,Noncoding RNA, Long,RNA, Long Non Translated,RNA, Long Non-Coding,RNA, Long Non-Protein-Coding,Untranslated RNA, Long,ncRNA, Long,ncRNAs, Long
D018507 Gene Expression Regulation, Developmental Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action during the developmental stages of an organism. Developmental Gene Expression Regulation,Embryologic Gene Expression Regulation,Gene Expression Regulation, Embryologic,Regulation of Gene Expression, Developmental,Regulation of Gene Expression, Embryologic,Regulation, Gene Expression, Developmental,Regulation, Gene Expression, Embryologic

Related Publications

Ikuhiro Okamoto
January 2018, Methods in molecular biology (Clifton, N.J.),
Ikuhiro Okamoto
January 2018, Methods in molecular biology (Clifton, N.J.),
Ikuhiro Okamoto
January 2024, Methods in molecular biology (Clifton, N.J.),
Ikuhiro Okamoto
March 1990, Molecular reproduction and development,
Ikuhiro Okamoto
June 1979, The Journal of experimental zoology,
Ikuhiro Okamoto
January 1993, Folia biologica,
Ikuhiro Okamoto
December 1971, Developmental biology,
Ikuhiro Okamoto
February 2013, Experimental cell research,
Ikuhiro Okamoto
March 2002, Molecular reproduction and development,
Ikuhiro Okamoto
November 1985, Molecular and cellular biology,
Copied contents to your clipboard!