Stimulated platelets release equivalent amounts of arachidonate from phosphatidylcholine, phosphatidylethanolamine, and inositides. 1986

M J Broekman

Thrombin-induced changes in arachidonate content of platelet phospholipids were quantitated to establish the ultimate origins of this eicosanoid precursor. Fifteen seconds following thrombin addition (15 U/5 X 10(9) platelets), phosphatidylcholine lost 11.8 nmol of arachidonate and phosphatidylethanolamine lost 10.5 nmol. Arachidonate in phosphatidate, phosphatidylinositol, and phosphatidylinositol-4,5-bisphosphate combined decreased by 11.0 nmol. Increases in free and oxygenated arachidonate (41 nmol) exceeded decreases in inositides. Thus phospholipase A2 released at least twice as much arachidonate as phospholipase C-diglyceride lipase. Phosphatidylinositol-4-phosphate levels remained unchanged upon stimulation. Therefore, increases in phosphatidylinositol-4,5-bisphosphate indicated the minimum rate of phosphorylation of phosphatidylinositol to resynthesize phosphatidylinositol-4,5-bisphosphate, following stimulus-induced breakdown by phospholipase C. Phosphatidylinositol-4, 5-bisphosphate increased 1.4 nmol between 10 and 15 sec following thrombin, markedly less than phosphatidylinositol decreased (2.1 nmol). This could be due to phospholipase A2, in addition to phospholipase C, acting directly on phosphatidylinositol to a greater extent than estimated by accumulation of lysophosphatidylinositol, degraded rapidly by lysophospholipase. Thus, upon high-dose thrombin stimulation of human platelets inositide metabolism via phospholipase C directs initial formation of intracellular second messengers, and sequentially, or in parallel, arachidonate release by phospholipase A2 supplies the larger proportion of arachidonate for syntheses of eicosanoids involved in intercellular communication.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D010713 Phosphatidylcholines Derivatives of PHOSPHATIDIC ACIDS in which the phosphoric acid is bound in ester linkage to a CHOLINE moiety. Choline Phosphoglycerides,Choline Glycerophospholipids,Phosphatidyl Choline,Phosphatidyl Cholines,Phosphatidylcholine,Choline, Phosphatidyl,Cholines, Phosphatidyl,Glycerophospholipids, Choline,Phosphoglycerides, Choline
D010714 Phosphatidylethanolamines Derivatives of phosphatidic acids in which the phosphoric acid is bound in ester linkage to an ethanolamine moiety. Complete hydrolysis yields 1 mole of glycerol, phosphoric acid and ethanolamine and 2 moles of fatty acids. Cephalin,Cephalins,Ethanolamine Phosphoglyceride,Ethanolamine Phosphoglycerides,Ethanolamineglycerophospholipids,Phosphoglyceride, Ethanolamine,Phosphoglycerides, Ethanolamine
D010716 Phosphatidylinositols Derivatives of phosphatidic acids in which the phosphoric acid is bound in ester linkage to the hexahydroxy alcohol, myo-inositol. Complete hydrolysis yields 1 mole of glycerol, phosphoric acid, myo-inositol, and 2 moles of fatty acids. Inositide Phospholipid,Inositol Phosphoglyceride,Inositol Phosphoglycerides,Inositol Phospholipid,Phosphoinositide,Phosphoinositides,PtdIns,Inositide Phospholipids,Inositol Phospholipids,Phosphatidyl Inositol,Phosphatidylinositol,Inositol, Phosphatidyl,Phosphoglyceride, Inositol,Phosphoglycerides, Inositol,Phospholipid, Inositide,Phospholipid, Inositol,Phospholipids, Inositide,Phospholipids, Inositol
D001792 Blood Platelets Non-nucleated disk-shaped cells formed in the megakaryocyte and found in the blood of all mammals. They are mainly involved in blood coagulation. Platelets,Thrombocytes,Blood Platelet,Platelet,Platelet, Blood,Platelets, Blood,Thrombocyte
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006868 Hydrolysis The process of cleaving a chemical compound by the addition of a molecule of water.
D001095 Arachidonic Acids Eicosatetraenoic Acids,Acids, Arachidonic,Acids, Eicosatetraenoic
D013917 Thrombin An enzyme formed from PROTHROMBIN that converts FIBRINOGEN to FIBRIN. Thrombase,Thrombin JMI,Thrombin-JMI,Thrombinar,Thrombostat,alpha-Thrombin,beta,gamma-Thrombin,beta-Thrombin,gamma-Thrombin,JMI, Thrombin
D016718 Arachidonic Acid An unsaturated, essential fatty acid. It is found in animal and human fat as well as in the liver, brain, and glandular organs, and is a constituent of animal phosphatides. It is formed by the synthesis from dietary linoleic acid and is a precursor in the biosynthesis of prostaglandins, thromboxanes, and leukotrienes. (all-Z)-5,8,11,14-Eicosatetraenoic acid,Arachidonic Acid, (all-Z)-Isomer, 1-(14)C-Labeled,Arachidonic Acid, (all-Z)-isomer, 3H-Labeled,Arachidonic Acid, Ammonium Salt, (all-Z)-Isomer,Arachidonic Acid, Cerium Salt, (all-Z)-Isomer,Arachidonic Acid, Cesium Salt, (all-Z)-Isomer,Arachidonic Acid, Lithium Salt, (all-Z)-Isomer,Arachidonic Acid, Potassium Salt, (all-Z)-Isomer,Arachidonic Acid, Sodium Salt,Arachidonic Acid, Sodium Salt, (all-Z)-Isomer,Arachidonic Acid, Zinc Salt, (all-Z)-Isomer,Sodium Arachidonate,Vitamin F,Arachidonate, Sodium

Related Publications

M J Broekman
February 1983, The Journal of biological chemistry,
M J Broekman
September 1980, Biochemical and biophysical research communications,
M J Broekman
January 1983, Advances in prostaglandin, thromboxane, and leukotriene research,
M J Broekman
September 1990, Thrombosis research,
M J Broekman
July 1979, Proceedings of the National Academy of Sciences of the United States of America,
M J Broekman
January 1980, Advances in prostaglandin and thromboxane research,
Copied contents to your clipboard!