Binding of complement component C3b to glycoprotein gC of herpes simplex virus type 1: mapping of gC-binding sites and demonstration of conserved C3b binding in low-passage clinical isolates. 1986

H M Friedman, and J C Glorioso, and G H Cohen, and J C Hastings, and S L Harris, and R J Eisenberg

The sites on glycoprotein gC of herpes simplex virus type 1 (HSV-1) which bind complement component C3b were evaluated by using anti-gC monoclonal antibodies and mutants which have alterations at defined regions of the glycoprotein. Monoclonal antibodies were incubated with HSV-1-infected cells in a competitive assay to block C3b binding. Each of 12 different monoclonals, which recognize the four major antigenic sites of gC, completely inhibited C3b binding. With this approach, no one antigenic group on gC could be assigned as the C3b-binding region. Next, 21 gC mutants were evaluated for C3b binding, including 1 which failed to synthesize gC, 4 which synthesized truncated forms of the glycoprotein such that gC did not insert into the cell's membrane, and 16 which expressed gC on the cell's surface but which had mutations in various antigenic groups. Eleven strains did not bind C3b. This included the 1 strain which did not synthesize gC, the 4 strains which secreted gC without inserting the glycoprotein into the cell membrane, and 6 of 16 strains which expressed gC on the cell surface. In these six strains, the mutations were at three different antigenic sites. One hypothesis to explain these findings is that C3b binding is modified by changes in the conformation of gC which develop either after antibodies bind to gC or as a result of mutations in the gC gene. Attachment of C3b to gC was also evaluated in 31 low-passage clinical isolates of HSV-1. Binding was detected with each HSV-1 isolate, but not with nine HSV-2 isolates. Therefore, although mutants that lack C3b binding are readily selected in vitro, the C3b-binding function of gC is maintained in vivo. These results indicate that the sites on gC that bind C3b are different from those that bind monoclonal antibodies, that antibodies directed against all sites on gC block C3b binding, and that C3b binding is a conserved function of gC in vivo.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D011951 Receptors, Complement Molecules on the surface of some B-lymphocytes and macrophages, that recognize and combine with the C3b, C3d, C1q, and C4b components of complement. Complement Receptors,Complement Receptor,Complement Receptor Type 1,Receptor, Complement
D003179 Complement C3b The larger fragment generated from the cleavage of COMPLEMENT C3 by C3 CONVERTASE. It is a constituent of the ALTERNATIVE PATHWAY C3 CONVERTASE (C3bBb), and COMPLEMENT C5 CONVERTASES in both the classical (C4b2a3b) and the alternative (C3bBb3b) pathway. C3b participates in IMMUNE ADHERENCE REACTION and enhances PHAGOCYTOSIS. It can be inactivated (iC3b) or cleaved by various proteases to yield fragments such as COMPLEMENT C3C; COMPLEMENT C3D; C3e; C3f; and C3g. C3b Complement,C3bi,Complement 3b,Complement Component 3b,Inactivated C3b,iC3b,C3b, Complement,C3b, Inactivated,Complement, C3b,Component 3b, Complement
D000911 Antibodies, Monoclonal Antibodies produced by a single clone of cells. Monoclonal Antibodies,Monoclonal Antibody,Antibody, Monoclonal
D000914 Antibodies, Viral Immunoglobulins produced in response to VIRAL ANTIGENS. Viral Antibodies
D000956 Antigens, Viral Substances elaborated by viruses that have antigenic activity. Viral Antigen,Viral Antigens,Antigen, Viral
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D014759 Viral Envelope Proteins Integral membrane proteins that are incorporated into the VIRAL ENVELOPE. They are glycosylated during VIRAL ASSEMBLY. Envelope Proteins, Viral,Viral Envelope Glycoproteins,Viral Envelope Protein,Virus Envelope Protein,Virus Peplomer Proteins,Bovine Leukemia Virus Glycoprotein gp51,Hepatitis Virus (MHV) Glycoprotein E2,LaCrosse Virus Envelope Glycoprotein G1,Simian Sarcoma Virus Glycoprotein 70,Viral Envelope Glycoprotein gPr90 (Murine Leukemia Virus),Viral Envelope Glycoprotein gp55 (Friend Virus),Viral Envelope Proteins E1,Viral Envelope Proteins E2,Viral Envelope Proteins gp52,Viral Envelope Proteins gp70,Virus Envelope Proteins,Envelope Glycoproteins, Viral,Envelope Protein, Viral,Envelope Protein, Virus,Envelope Proteins, Virus,Glycoproteins, Viral Envelope,Peplomer Proteins, Virus,Protein, Viral Envelope,Protein, Virus Envelope,Proteins, Viral Envelope,Proteins, Virus Envelope,Proteins, Virus Peplomer
D017463 Receptors, Complement 3b Molecular sites on or in some B-lymphocytes and macrophages that recognize and combine with COMPLEMENT C3B. The primary structure of these receptors reveal that they contain transmembrane and cytoplasmic domains, with their extracellular portion composed entirely of thirty short consensus repeats each having 60 to 70 amino acids. Antigens, CD35,C3b Receptors,CD35 Antigens,CR1 Receptors,Complement 3b Receptors,Receptors, C3b,Receptors, CR1,CD 35 Antigens,CD35 Antigen,Complement 3b Receptor,Antigen, CD35,Antigens, CD 35,Receptor, Complement 3b
D018139 Simplexvirus A genus of the family HERPESVIRIDAE, subfamily ALPHAHERPESVIRINAE, consisting of herpes simplex-like viruses. The type species is HERPESVIRUS 1, HUMAN. Herpes Simplex Virus,Herpesvirus 1, Saimiriine,Herpesvirus 1, Saimirine,Herpesvirus 16, Cercopithecine,Marmoset Virus,Cercopithecine Herpesvirus 16,Herpes Labialis Virus,Herpes-T Virus,Herpesvirus 1 (alpha), Saimirine,Herpesvirus Hominis,Herpesvirus Papio 2,Herpesvirus Platyrhinae,Marmoset Herpesvirus,Saimiriine Herpesvirus 1,Herpes Labialis Viruses,Herpes Simplex Viruses,Herpes T Virus,Herpes-T Viruses,Herpesvirus Homini,Herpesvirus, Marmoset,Herpesviruses, Marmoset,Homini, Herpesvirus,Hominis, Herpesvirus,Labialis Virus, Herpes,Labialis Viruses, Herpes,Marmoset Herpesviruses,Marmoset Viruses,Platyrhinae, Herpesvirus,Saimirine Herpesvirus 1,Simplexviruses,Virus, Herpes Labialis,Viruses, Herpes Labialis

Related Publications

H M Friedman, and J C Glorioso, and G H Cohen, and J C Hastings, and S L Harris, and R J Eisenberg
September 1985, Journal of virology,
H M Friedman, and J C Glorioso, and G H Cohen, and J C Hastings, and S L Harris, and R J Eisenberg
December 1987, Microbial pathogenesis,
H M Friedman, and J C Glorioso, and G H Cohen, and J C Hastings, and S L Harris, and R J Eisenberg
March 2002, Virology,
H M Friedman, and J C Glorioso, and G H Cohen, and J C Hastings, and S L Harris, and R J Eisenberg
December 1999, The Journal of experimental medicine,
H M Friedman, and J C Glorioso, and G H Cohen, and J C Hastings, and S L Harris, and R J Eisenberg
June 1989, The Journal of general virology,
H M Friedman, and J C Glorioso, and G H Cohen, and J C Hastings, and S L Harris, and R J Eisenberg
May 1990, Journal of virology,
H M Friedman, and J C Glorioso, and G H Cohen, and J C Hastings, and S L Harris, and R J Eisenberg
January 1984, Nature,
H M Friedman, and J C Glorioso, and G H Cohen, and J C Hastings, and S L Harris, and R J Eisenberg
July 1996, Journal of virology,
H M Friedman, and J C Glorioso, and G H Cohen, and J C Hastings, and S L Harris, and R J Eisenberg
January 1985, Journal of virology,
H M Friedman, and J C Glorioso, and G H Cohen, and J C Hastings, and S L Harris, and R J Eisenberg
October 1998, Journal of virology,
Copied contents to your clipboard!