N protein is the predominant antigen recognized by vesicular stomatitis virus-specific cytotoxic T cells. 1986

L Puddington, and M J Bevan, and J K Rose, and L Lefrançois

The specificity of anti-vesicular stomatitis virus (VSV)-specific cytotoxic T cells was explored with cell lines expressing VSV genes introduced by electroporation. Low levels of nucleocapsid (N) protein were detected on the surface of VSV-infected cells, but N protein could not be detected on the plasma membrane of transfected EL4 cells. Intracellular N protein was detectable by enzyme-linked immunosorbent assay or immunoprecipitation in some of the transfected cell lines but not in others, unless the transfected genes were induced by sodium butyrate. However, all of the stably transfected EL4 cell lines expressing the VSV-Indiana N protein were efficiently lysed by serotype-specific and cross-reactive anti-VSV cytotoxic T cells (CTLs). Primary cross-reactive anti-VSV CTLs appeared to be specific solely for N protein, based on cold-target competition assays using infected and transfected target cells. Cell lines expressing 100- to 1,000-fold less N protein than did VSV-infected cells were efficiently lysed by both primary and secondary anti-VSV CTLs. Cell lines expressing 100-fold less G protein than did VSV-infected cells were not lysed by either population of effectors. Significantly, cold-target competition studies with secondary CTLs demonstrated that N protein-expressing cell lines were more efficient competitors than were VSV-infected cells even though the latter expressed 100- to 1,000-fold more N protein. This was not an artifact of viral infection since infection of the transfected cell lines did not affect their ability to compete. The possibility that cell lines constitutively expressing internal virus proteins present antigen more effectively than infected cells do is discussed.

UI MeSH Term Description Entries
D008562 Membrane Glycoproteins Glycoproteins found on the membrane or surface of cells. Cell Surface Glycoproteins,Surface Glycoproteins,Cell Surface Glycoprotein,Membrane Glycoprotein,Surface Glycoprotein,Glycoprotein, Cell Surface,Glycoprotein, Membrane,Glycoprotein, Surface,Glycoproteins, Cell Surface,Glycoproteins, Membrane,Glycoproteins, Surface,Surface Glycoprotein, Cell,Surface Glycoproteins, Cell
D002213 Capsid The outer protein protective shell of a virus, which protects the viral nucleic acid. Capsids are composed of repeating units (capsomers or capsomeres) of CAPSID PROTEINS which when assembled together form either an icosahedral or helical shape. Procapsid,Prohead,Capsids,Procapsids,Proheads
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D003429 Cross Reactions Serological reactions in which an antiserum against one antigen reacts with a non-identical but closely related antigen. Cross Reaction,Reaction, Cross,Reactions, Cross
D006649 Histocompatibility Antigens A group of antigens that includes both the major and minor histocompatibility antigens. The former are genetically determined by the major histocompatibility complex. They determine tissue type for transplantation and cause allograft rejections. The latter are systems of allelic alloantigens that can cause weak transplant rejection. Transplantation Antigens,Antigens, Transplantation,Histocompatibility Antigen,LD Antigens,SD Antigens,Antigen, Histocompatibility,Antigens, Histocompatibility,Antigens, LD,Antigens, SD
D000911 Antibodies, Monoclonal Antibodies produced by a single clone of cells. Monoclonal Antibodies,Monoclonal Antibody,Antibody, Monoclonal
D000956 Antigens, Viral Substances elaborated by viruses that have antigenic activity. Viral Antigen,Viral Antigens,Antigen, Viral
D013602 T-Lymphocytes, Cytotoxic Immunized T-lymphocytes which can directly destroy appropriate target cells. These cytotoxic lymphocytes may be generated in vitro in mixed lymphocyte cultures (MLC), in vivo during a graft-versus-host (GVH) reaction, or after immunization with an allograft, tumor cell or virally transformed or chemically modified target cell. The lytic phenomenon is sometimes referred to as cell-mediated lympholysis (CML). These CD8-positive cells are distinct from NATURAL KILLER CELLS and NATURAL KILLER T-CELLS. There are two effector phenotypes: TC1 and TC2. Cell-Mediated Lympholytic Cells,Cytotoxic T Cells,Cytotoxic T Lymphocyte,Cytotoxic T-Lymphocytes,TC1 Cell,TC1 Cells,TC2 Cell,TC2 Cells,Cell Mediated Lympholytic Cells,Cell, Cell-Mediated Lympholytic,Cell, TC1,Cell, TC2,Cell-Mediated Lympholytic Cell,Cytotoxic T Cell,Cytotoxic T Lymphocytes,Cytotoxic T-Lymphocyte,Lymphocyte, Cytotoxic T,Lympholytic Cell, Cell-Mediated,Lympholytic Cells, Cell-Mediated,T Cell, Cytotoxic,T Lymphocyte, Cytotoxic,T Lymphocytes, Cytotoxic,T-Lymphocyte, Cytotoxic
D014162 Transfection The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES. Transfections
D014721 Vesicular stomatitis Indiana virus The type species of VESICULOVIRUS causing a disease symptomatically similar to FOOT-AND-MOUTH DISEASE in cattle, horses, and pigs. It may be transmitted to other species including humans, where it causes influenza-like symptoms. Vesicular stomatitis-Indiana virus

Related Publications

L Puddington, and M J Bevan, and J K Rose, and L Lefrançois
December 1991, Journal of virology,
L Puddington, and M J Bevan, and J K Rose, and L Lefrançois
August 1978, Journal of immunology (Baltimore, Md. : 1950),
L Puddington, and M J Bevan, and J K Rose, and L Lefrançois
January 1981, Microbiology and immunology,
L Puddington, and M J Bevan, and J K Rose, and L Lefrançois
May 1981, Journal of immunology (Baltimore, Md. : 1950),
L Puddington, and M J Bevan, and J K Rose, and L Lefrançois
May 1980, Journal of immunology (Baltimore, Md. : 1950),
L Puddington, and M J Bevan, and J K Rose, and L Lefrançois
November 2003, Blood,
L Puddington, and M J Bevan, and J K Rose, and L Lefrançois
February 1978, Proceedings of the National Academy of Sciences of the United States of America,
L Puddington, and M J Bevan, and J K Rose, and L Lefrançois
January 2012, Journal of immunological methods,
L Puddington, and M J Bevan, and J K Rose, and L Lefrançois
June 2017, EMBO reports,
Copied contents to your clipboard!