Fluctuation of simian virus 40 (SV40) super T-antigen expression in tumors induced by SV40-transformed mouse mammary epithelial cells. 1986

J S Butel, and C Wong, and B K Evans

Higher-molecular-weight forms of the simian virus 40 (SV40) large tumor antigen (T-Ag), designated super T-Ag, are commonly found in SV40-transformed rodent cells. We examined the potential role of super T-Ag in neoplastic progression by using a series of clonal SV40-transformed mouse mammary epithelial cell lines. We confirmed an association between the presence of super T-Ag and cellular anchorage-independent growth in methylcellulose. However, tumorigenicity in nude mice did not correlate with the expression of super T-Ag. In the tumors that developed in nude mice, super T-Ag expression fluctuated almost randomly. Cell surface iodination showed that super T-Ag molecules were transported to the epithelial cell surface. The biological functions of super T-Ag remain obscure, but it is clear that it is not important for tumorigenicity by SV40-transformed mouse mammary epithelial cells. Super T-Ag may be most important as a marker of genomic rearrangements by the resident viral genes in transformed cells.

UI MeSH Term Description Entries
D008321 Mammary Glands, Animal MAMMARY GLANDS in the non-human MAMMALS. Mammae,Udder,Animal Mammary Glands,Animal Mammary Gland,Mammary Gland, Animal,Udders
D009374 Neoplasms, Experimental Experimentally induced new abnormal growth of TISSUES in animals to provide models for studying human neoplasms. Experimental Neoplasms,Experimental Neoplasm,Neoplasm, Experimental
D009856 Oncogene Proteins, Viral Products of viral oncogenes, most commonly retroviral oncogenes. They usually have transforming and often protein kinase activities. Viral Oncogene Proteins,Viral Transforming Proteins,v-onc Proteins,Transforming Proteins, Viral,v onc Proteins
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002471 Cell Transformation, Neoplastic Cell changes manifested by escape from control mechanisms, increased growth potential, alterations in the cell surface, karyotypic abnormalities, morphological and biochemical deviations from the norm, and other attributes conferring the ability to invade, metastasize, and kill. Neoplastic Transformation, Cell,Neoplastic Cell Transformation,Transformation, Neoplastic Cell,Tumorigenic Transformation,Cell Neoplastic Transformation,Cell Neoplastic Transformations,Cell Transformations, Neoplastic,Neoplastic Cell Transformations,Neoplastic Transformations, Cell,Transformation, Cell Neoplastic,Transformation, Tumorigenic,Transformations, Cell Neoplastic,Transformations, Neoplastic Cell,Transformations, Tumorigenic,Tumorigenic Transformations
D002472 Cell Transformation, Viral An inheritable change in cells manifested by changes in cell division and growth and alterations in cell surface properties. It is induced by infection with a transforming virus. Transformation, Viral Cell,Viral Cell Transformation,Cell Transformations, Viral,Transformations, Viral Cell,Viral Cell Transformations
D002999 Clone Cells A group of genetically identical cells all descended from a single common ancestral cell by mitosis in eukaryotes or by binary fission in prokaryotes. Clone cells also include populations of recombinant DNA molecules all carrying the same inserted sequence. (From King & Stansfield, Dictionary of Genetics, 4th ed) Clones,Cell, Clone,Cells, Clone,Clone,Clone Cell
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000952 Antigens, Polyomavirus Transforming Polyomavirus antigens which cause infection and cellular transformation. The large T antigen is necessary for the initiation of viral DNA synthesis, repression of transcription of the early region and is responsible in conjunction with the middle T antigen for the transformation of primary cells. Small T antigen is necessary for the completion of the productive infection cycle. Polyomavirus Large T Antigens,Polyomavirus Middle T Antigens,Polyomavirus Small T Antigens,Polyomavirus T Proteins,Polyomavirus Transforming Antigens,Polyomavirus Tumor Antigens,SV40 T Antigens,SV40 T Proteins,Simian Sarcoma Virus Proteins,Polyomaviruses Large T Proteins,Polyomaviruses Middle T Proteins,Polyomaviruses Small T Proteins,Antigens, Polyomavirus Tumor,Antigens, SV40 T,Proteins, Polyomavirus T,Proteins, SV40 T,T Antigens, SV40,T Proteins, Polyomavirus,T Proteins, SV40,Transforming Antigens, Polyomavirus,Tumor Antigens, Polyomavirus
D000957 Antigens, Viral, Tumor Those proteins recognized by antibodies from serum of animals bearing tumors induced by viruses; these proteins are presumably coded for by the nucleic acids of the same viruses that caused the neoplastic transformation. Antigens, Neoplasm, Viral,Neoplasm Antigens, Viral,T Antigens,Tumor Antigens, Viral,Viral Tumor Antigens,Virus Transforming Antigens,Large T Antigen,Large T-Antigen,Small T Antigen,Small T-Antigen,T Antigen,T-Antigen,Viral T Antigens,Antigen, Large T,Antigen, Small T,Antigen, T,Antigens, T,Antigens, Viral Neoplasm,Antigens, Viral T,Antigens, Viral Tumor,Antigens, Virus Transforming,T Antigen, Large,T Antigen, Small,T Antigens, Viral,T-Antigen, Large,T-Antigen, Small,Transforming Antigens, Virus,Viral Neoplasm Antigens

Related Publications

J S Butel, and C Wong, and B K Evans
June 1979, Journal of virology,
J S Butel, and C Wong, and B K Evans
May 1985, Molecular and cellular biology,
J S Butel, and C Wong, and B K Evans
January 1980, Annals of the New York Academy of Sciences,
J S Butel, and C Wong, and B K Evans
February 1987, The Journal of experimental medicine,
Copied contents to your clipboard!