Effects of prostaglandin D2 on the activity of hypothalamic neurons in the rat. 1986

A Inokuchi, and Y Oomura

The effects of electrophoretically applied prostaglandin D2 (PGD2) on neuronal activity in the rat lateral preoptic area (LPOA) and posterior hypothalamic area (PHA) were examined. In the LPOA, 20% of the tested neurons were excited, 26% inhibited, and 6% showed bidirectional response. The direct effects often showed desensitization after repeated applications. Neurons excited by PGD2 were significantly sensitive (excitation) to acetylcholine (ACh). The ACh excitatory effect was sometimes (38%) attenuated, blocked, or reversed by concurrent PGD2 application. Excitatory or inhibitory effect of noradrenaline (NA) was not related to the effects of PGD2; however, modulation of the NA responses by PGD2 was common (58%). Inhibition, the predominant NA response, was changed to no effect or to excitation during simultaneous PGD2 application. Changes of the NA responses from inhibition to excitation, or from excitation to inhibition-excitation sequences were observed after PGD2 infusion into the third cerebral ventricle at low concentrations. In 43% of the cells, neurotransmission in the LPOA following ventral noradrenergic bundle stimulation was modified by PGD2 application. PGD2 application tended to reduce the duration of inhibition and to extend that of excitation. The direct effects of PGD2 in the PHA were similar to those in the LPOA. Desensitization was also observed in the PHA, but no interrelations were observed among the effects of PGD2, ACh, and NA. Modulation of ACh and NA responses by PGD2 was rarely seen in the PHA. Possible contributions of PGD2 to sleep and thermoregulation are discussed.

UI MeSH Term Description Entries
D007031 Hypothalamus Ventral part of the DIENCEPHALON extending from the region of the OPTIC CHIASM to the caudal border of the MAMMILLARY BODIES and forming the inferior and lateral walls of the THIRD VENTRICLE. Lamina Terminalis,Preoptico-Hypothalamic Area,Area, Preoptico-Hypothalamic,Areas, Preoptico-Hypothalamic,Preoptico Hypothalamic Area,Preoptico-Hypothalamic Areas
D007034 Hypothalamus, Posterior The part of the hypothalamus posterior to the middle region consisting of several nuclei including the medial maxillary nucleus, lateral mammillary nucleus, and posterior hypothalamic nucleus (posterior hypothalamic area). The posterior hypothalamic area is concerned with control of sympathetic responses and is sensitive to conditions of decreasing temperature and controls the mechanisms for the conservation and increased production of heat. Hypothalamic Region, Posterior,Posterior Hypothalamic Region,Area Hypothalamica Posterior,Hypothalamus Posterior,Mammillary Region,Posterior Hypothalamus,Posterior Periventricular Nucleus,Premammillary Nucleus,Supramammillary Commissure,Supramammillary Nucleus,Area Hypothalamica Posteriors,Commissure, Supramammillary,Commissures, Supramammillary,Hypothalamic Regions, Posterior,Hypothalamica Posterior, Area,Hypothalamica Posteriors, Area,Hypothalamus Posteriors,Mammillary Regions,Nucleus, Posterior Periventricular,Nucleus, Premammillary,Nucleus, Supramammillary,Periventricular Nucleus, Posterior,Posterior Hypothalamic Regions,Posterior, Area Hypothalamica,Posterior, Hypothalamus,Posteriors, Area Hypothalamica,Posteriors, Hypothalamus,Region, Mammillary,Region, Posterior Hypothalamic,Regions, Mammillary,Regions, Posterior Hypothalamic,Supramammillary Commissures
D008297 Male Males
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D011301 Preoptic Area Region of hypothalamus between the ANTERIOR COMMISSURE and OPTIC CHIASM. Area Preoptica,Lateral Preoptic Area,Medial Preoptic Area,Preoptic Nuclei,Area Preopticas,Area, Lateral Preoptic,Area, Medial Preoptic,Area, Preoptic,Areas, Lateral Preoptic,Areas, Medial Preoptic,Areas, Preoptic,Lateral Preoptic Areas,Medial Preoptic Areas,Nuclei, Preoptic,Nucleus, Preoptic,Preoptic Area, Lateral,Preoptic Area, Medial,Preoptic Areas,Preoptic Areas, Lateral,Preoptic Areas, Medial,Preoptic Nucleus,Preoptica, Area,Preopticas, Area
D011457 Prostaglandins D Physiologically active prostaglandins found in many tissues and organs. They show pressor activity, are mediators of inflammation, and have potential antithrombotic effects. PGD
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.

Related Publications

A Inokuchi, and Y Oomura
June 1987, Canadian journal of physiology and pharmacology,
A Inokuchi, and Y Oomura
May 1981, Research communications in chemical pathology and pharmacology,
A Inokuchi, and Y Oomura
January 1994, The Journal of pharmacology and experimental therapeutics,
A Inokuchi, and Y Oomura
November 1976, Brain research,
A Inokuchi, and Y Oomura
October 2008, Endocrinology,
A Inokuchi, and Y Oomura
April 1996, Sheng li xue bao : [Acta physiologica Sinica],
A Inokuchi, and Y Oomura
March 1997, Annals of the New York Academy of Sciences,
A Inokuchi, and Y Oomura
June 1990, Sheng li xue bao : [Acta physiologica Sinica],
A Inokuchi, and Y Oomura
February 1978, Neuroscience letters,
Copied contents to your clipboard!