Chromosomal localization of muscle nicotinic acetylcholine receptor genes in the mouse. 1986

O Heidmann, and A Buonanno, and B Geoffroy, and B Robert, and J L Guénet, and J P Merlie, and J P Changeux

The chromosomal localization of the genes encoding the four subunits of muscle nicotinic receptor was determined by analyzing restriction fragment length polymorphisms between two mouse species Mus musculus domesticus (DBA/2) and Mus spretus (SPE). Analysis of the progeny of the interspecies mouse backcross (DBA/2 X SPE) X DBA/2 showed that the alpha-subunit gene cosegregates with the alpha-cardiac actin gene on chromosome 17, that the beta-subunit gene is located on chromosome 11, and that the gamma- and delta-subunit genes cosegregate and are located on chromosome 1.

UI MeSH Term Description Entries
D008811 Mice, Inbred DBA An inbred strain of mouse. Specific substrains are used in a variety of areas of BIOMEDICAL RESEARCH such as DBA/1J, which is used as a model for RHEUMATOID ARTHRITIS. Mice, DBA,Mouse, DBA,Mouse, Inbred DBA,DBA Mice,DBA Mice, Inbred,DBA Mouse,DBA Mouse, Inbred,Inbred DBA Mice,Inbred DBA Mouse
D009115 Muridae A family of the order Rodentia containing 250 genera including the two genera Mus (MICE) and Rattus (RATS), from which the laboratory inbred strains are developed. The fifteen subfamilies are SIGMODONTINAE (New World mice and rats), CRICETINAE, Spalacinae, Myospalacinae, Lophiomyinae, ARVICOLINAE, Platacanthomyinae, Nesomyinae, Otomyinae, Rhizomyinae, GERBILLINAE, Dendromurinae, Cricetomyinae, MURINAE (Old World mice and rats), and Hydromyinae. Murids,Murid
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D011110 Polymorphism, Genetic The regular and simultaneous occurrence in a single interbreeding population of two or more discontinuous genotypes. The concept includes differences in genotypes ranging in size from a single nucleotide site (POLYMORPHISM, SINGLE NUCLEOTIDE) to large nucleotide sequences visible at a chromosomal level. Gene Polymorphism,Genetic Polymorphism,Polymorphism (Genetics),Genetic Polymorphisms,Gene Polymorphisms,Polymorphism, Gene,Polymorphisms (Genetics),Polymorphisms, Gene,Polymorphisms, Genetic
D011978 Receptors, Nicotinic One of the two major classes of cholinergic receptors. Nicotinic receptors were originally distinguished by their preference for NICOTINE over MUSCARINE. They are generally divided into muscle-type and neuronal-type (previously ganglionic) based on pharmacology, and subunit composition of the receptors. Nicotinic Acetylcholine Receptors,Nicotinic Receptors,Nicotinic Acetylcholine Receptor,Nicotinic Receptor,Acetylcholine Receptor, Nicotinic,Acetylcholine Receptors, Nicotinic,Receptor, Nicotinic,Receptor, Nicotinic Acetylcholine,Receptors, Nicotinic Acetylcholine
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D003433 Crosses, Genetic Deliberate breeding of two different individuals that results in offspring that carry part of the genetic material of each parent. The parent organisms must be genetically compatible and may be from different varieties or closely related species. Cross, Genetic,Genetic Cross,Genetic Crosses
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA

Related Publications

O Heidmann, and A Buonanno, and B Geoffroy, and B Robert, and J L Guénet, and J P Merlie, and J P Changeux
August 1992, Genomics,
O Heidmann, and A Buonanno, and B Geoffroy, and B Robert, and J L Guénet, and J P Merlie, and J P Changeux
June 2002, The Journal of physiology,
O Heidmann, and A Buonanno, and B Geoffroy, and B Robert, and J L Guénet, and J P Merlie, and J P Changeux
May 1990, FEBS letters,
O Heidmann, and A Buonanno, and B Geoffroy, and B Robert, and J L Guénet, and J P Merlie, and J P Changeux
September 1986, The Journal of biological chemistry,
O Heidmann, and A Buonanno, and B Geoffroy, and B Robert, and J L Guénet, and J P Merlie, and J P Changeux
June 1986, Nucleic acids research,
O Heidmann, and A Buonanno, and B Geoffroy, and B Robert, and J L Guénet, and J P Merlie, and J P Changeux
September 2001, Journal of dental research,
O Heidmann, and A Buonanno, and B Geoffroy, and B Robert, and J L Guénet, and J P Merlie, and J P Changeux
May 1994, Mammalian genome : official journal of the International Mammalian Genome Society,
O Heidmann, and A Buonanno, and B Geoffroy, and B Robert, and J L Guénet, and J P Merlie, and J P Changeux
January 1995, Life sciences,
O Heidmann, and A Buonanno, and B Geoffroy, and B Robert, and J L Guénet, and J P Merlie, and J P Changeux
January 1989, Neuron,
O Heidmann, and A Buonanno, and B Geoffroy, and B Robert, and J L Guénet, and J P Merlie, and J P Changeux
December 1990, The Journal of cell biology,
Copied contents to your clipboard!