Targeting Peroxisome Proliferator-Activated Receptor γ to Increase Estrogen-Induced Apoptosis in Estrogen-Deprived Breast Cancer Cells. 2018

Ping Fan, and Balkees Abderrahman, and Tina S Chai, and Smitha Yerrum, and V Craig Jordan
Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.

Peroxisome proliferator-activated receptor γ (PPARγ) is an important transcription factor that modulates lipid metabolism and inflammation. However, it remains unclear whether PPARγ is involved in modulation of estrogen (E2)-induced inflammation, thus affecting apoptosis of E2-deprived breast cancer cells, MCF-7:5C and MCF-7:2A. Here, we demonstrated that E2 treatment suppressed the function of PPARγ in both cell lines, although the suppressive effect in MCF-7:2A cells was delayed owing to high PPARγ expression. Activation of PPARγ by a specific agonist, pioglitazone, selectively blocked the induction of TNFα expression by E2, but did not affect other adipose inflammatory genes, such as fatty acid desaturase 1 and IL6. This suppression of TNFα expression by pioglitazone was mainly mediated by transrepression of nuclear factor-κB (NF-κB) DNA-binding activity. A novel finding was that NF-κB functions as an oxidative stress inducer in MCF-7:5C cells but an antioxidant in MCF-7:2A cells. Therefore, the NF-κB inhibitor JSH-23 displayed effects equivalent to those of pioglitazone, with complete inhibition of apoptosis in MCF-7:5C cells, but it increased E2-induced apoptosis in MCF-7:2A cells. Depletion of PPARγ by siRNA or the PPARγ antagonist T0070907 accelerated E2-induced apoptosis, with activation of NF-κB-dependent TNFα and oxidative stress. For the first time, we demonstrated that PPARγ is a growth signal and has potential to modulate NF-κB activity and oxidative stress in E2-deprived breast cancer cell lines. All of these findings suggest that anti-PPARγ therapy is a novel strategy to improve the therapeutic effects of E2-induced apoptosis in E2-deprived breast cancer.

UI MeSH Term Description Entries
D007249 Inflammation A pathological process characterized by injury or destruction of tissues caused by a variety of cytologic and chemical reactions. It is usually manifested by typical signs of pain, heat, redness, swelling, and loss of function. Innate Inflammatory Response,Inflammations,Inflammatory Response, Innate,Innate Inflammatory Responses
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D001943 Breast Neoplasms Tumors or cancer of the human BREAST. Breast Cancer,Breast Tumors,Cancer of Breast,Breast Carcinoma,Cancer of the Breast,Human Mammary Carcinoma,Malignant Neoplasm of Breast,Malignant Tumor of Breast,Mammary Cancer,Mammary Carcinoma, Human,Mammary Neoplasm, Human,Mammary Neoplasms, Human,Neoplasms, Breast,Tumors, Breast,Breast Carcinomas,Breast Malignant Neoplasm,Breast Malignant Neoplasms,Breast Malignant Tumor,Breast Malignant Tumors,Breast Neoplasm,Breast Tumor,Cancer, Breast,Cancer, Mammary,Cancers, Mammary,Carcinoma, Breast,Carcinoma, Human Mammary,Carcinomas, Breast,Carcinomas, Human Mammary,Human Mammary Carcinomas,Human Mammary Neoplasm,Human Mammary Neoplasms,Mammary Cancers,Mammary Carcinomas, Human,Neoplasm, Breast,Neoplasm, Human Mammary,Neoplasms, Human Mammary,Tumor, Breast
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004967 Estrogens Compounds that interact with ESTROGEN RECEPTORS in target tissues to bring about the effects similar to those of ESTRADIOL. Estrogens stimulate the female reproductive organs, and the development of secondary female SEX CHARACTERISTICS. Estrogenic chemicals include natural, synthetic, steroidal, or non-steroidal compounds. Estrogen,Estrogen Effect,Estrogen Effects,Estrogen Receptor Agonists,Estrogenic Agents,Estrogenic Compounds,Estrogenic Effect,Estrogenic Effects,Agents, Estrogenic,Agonists, Estrogen Receptor,Compounds, Estrogenic,Effects, Estrogen,Effects, Estrogenic,Receptor Agonists, Estrogen
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D014409 Tumor Necrosis Factor-alpha Serum glycoprotein produced by activated MACROPHAGES and other mammalian MONONUCLEAR LEUKOCYTES. It has necrotizing activity against tumor cell lines and increases ability to reject tumor transplants. Also known as TNF-alpha, it is only 30% homologous to TNF-beta (LYMPHOTOXIN), but they share TNF RECEPTORS. Cachectin,TNF-alpha,Tumor Necrosis Factor Ligand Superfamily Member 2,Cachectin-Tumor Necrosis Factor,TNF Superfamily, Member 2,TNFalpha,Tumor Necrosis Factor,Cachectin Tumor Necrosis Factor,Tumor Necrosis Factor alpha
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D015854 Up-Regulation A positive regulatory effect on physiological processes at the molecular, cellular, or systemic level. At the molecular level, the major regulatory sites include membrane receptors, genes (GENE EXPRESSION REGULATION), mRNAs (RNA, MESSENGER), and proteins. Receptor Up-Regulation,Upregulation,Up-Regulation (Physiology),Up Regulation

Related Publications

Ping Fan, and Balkees Abderrahman, and Tina S Chai, and Smitha Yerrum, and V Craig Jordan
February 2012, Oncogene,
Ping Fan, and Balkees Abderrahman, and Tina S Chai, and Smitha Yerrum, and V Craig Jordan
November 2012, Anti-cancer agents in medicinal chemistry,
Ping Fan, and Balkees Abderrahman, and Tina S Chai, and Smitha Yerrum, and V Craig Jordan
September 2005, Clinical cancer research : an official journal of the American Association for Cancer Research,
Ping Fan, and Balkees Abderrahman, and Tina S Chai, and Smitha Yerrum, and V Craig Jordan
August 2012, Journal of molecular and cellular cardiology,
Ping Fan, and Balkees Abderrahman, and Tina S Chai, and Smitha Yerrum, and V Craig Jordan
March 2010, World journal of gastrointestinal oncology,
Ping Fan, and Balkees Abderrahman, and Tina S Chai, and Smitha Yerrum, and V Craig Jordan
July 2011, American journal of respiratory and critical care medicine,
Ping Fan, and Balkees Abderrahman, and Tina S Chai, and Smitha Yerrum, and V Craig Jordan
March 2015, Oncology reports,
Ping Fan, and Balkees Abderrahman, and Tina S Chai, and Smitha Yerrum, and V Craig Jordan
December 2013, Diabetes & metabolism journal,
Ping Fan, and Balkees Abderrahman, and Tina S Chai, and Smitha Yerrum, and V Craig Jordan
December 2012, IUBMB life,
Ping Fan, and Balkees Abderrahman, and Tina S Chai, and Smitha Yerrum, and V Craig Jordan
January 2015, PPAR research,
Copied contents to your clipboard!