Converting enzyme inhibition: search for additional mechanisms of action. 1986

M G Bogaert

Although the therapeutic usefulness of angiotensin converting enzyme (ACE) inhibitors in patients with hypertension and congestive heart failure has been clearly demonstrated, important unanswered questions remain about these drugs, including patient selection criteria, side effects, long-term effects, and especially their precise mechanism of action. The principal explanation of the effect of ACE inhibitors remains the inhibition of the renin-angiotensin system (RAS). However, in chronic treatment with ACE-inhibitory drugs, this relationship may not held true. Additional mechanisms of action postulated to explain the effect of ACE-inhibitors include inhibition of angiotensin II formation in the central RAS, neutralization of renin activity in the vascular wall, blockade of vasoconstrictor response to sympathetic nerve stimulation, and possible involvement of prostaglandins linked, for instance, to bradykinin accumulation. The search for additional mechanisms of action should lead to clinically important findings, provide a better understanding of the pathophysiology of cardiovascular disease, and improve patient treatment with ACE inhibitory drugs.

UI MeSH Term Description Entries
D012084 Renin-Angiotensin System A BLOOD PRESSURE regulating system of interacting components that include RENIN; ANGIOTENSINOGEN; ANGIOTENSIN CONVERTING ENZYME; ANGIOTENSIN I; ANGIOTENSIN II; and angiotensinase. Renin, an enzyme produced in the kidney, acts on angiotensinogen, an alpha-2 globulin produced by the liver, forming ANGIOTENSIN I. Angiotensin-converting enzyme, contained in the lung, acts on angiotensin I in the plasma converting it to ANGIOTENSIN II, an extremely powerful vasoconstrictor. Angiotensin II causes contraction of the arteriolar and renal VASCULAR SMOOTH MUSCLE, leading to retention of salt and water in the KIDNEY and increased arterial blood pressure. In addition, angiotensin II stimulates the release of ALDOSTERONE from the ADRENAL CORTEX, which in turn also increases salt and water retention in the kidney. Angiotensin-converting enzyme also breaks down BRADYKININ, a powerful vasodilator and component of the KALLIKREIN-KININ SYSTEM. Renin-Angiotensin-Aldosterone System,Renin Angiotensin Aldosterone System,Renin Angiotensin System,System, Renin-Angiotensin,System, Renin-Angiotensin-Aldosterone
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000806 Angiotensin-Converting Enzyme Inhibitors A class of drugs whose main indications are the treatment of hypertension and heart failure. They exert their hemodynamic effect mainly by inhibiting the renin-angiotensin system. They also modulate sympathetic nervous system activity and increase prostaglandin synthesis. They cause mainly vasodilation and mild natriuresis without affecting heart rate and contractility. ACE Inhibitor,ACE Inhibitors,Angiotensin Converting Enzyme Inhibitor,Angiotensin I-Converting Enzyme Inhibitor,Angiotensin-Converting Enzyme Inhibitor,Kininase II Inhibitor,Kininase II Inhibitors,Angiotensin I-Converting Enzyme Inhibitors,Angiotensin-Converting Enzyme Antagonists,Antagonists, Angiotensin-Converting Enzyme,Antagonists, Kininase II,Inhibitors, ACE,Inhibitors, Angiotensin-Converting Enzyme,Inhibitors, Kininase II,Kininase II Antagonists,Angiotensin Converting Enzyme Antagonists,Angiotensin Converting Enzyme Inhibitors,Angiotensin I Converting Enzyme Inhibitor,Angiotensin I Converting Enzyme Inhibitors,Antagonists, Angiotensin Converting Enzyme,Enzyme Antagonists, Angiotensin-Converting,Enzyme Inhibitor, Angiotensin-Converting,Enzyme Inhibitors, Angiotensin-Converting,II Inhibitor, Kininase,Inhibitor, ACE,Inhibitor, Angiotensin-Converting Enzyme,Inhibitor, Kininase II,Inhibitors, Angiotensin Converting Enzyme
D000959 Antihypertensive Agents Drugs used in the treatment of acute or chronic vascular HYPERTENSION regardless of pharmacological mechanism. Among the antihypertensive agents are DIURETICS; (especially DIURETICS, THIAZIDE); ADRENERGIC BETA-ANTAGONISTS; ADRENERGIC ALPHA-ANTAGONISTS; ANGIOTENSIN-CONVERTING ENZYME INHIBITORS; CALCIUM CHANNEL BLOCKERS; GANGLIONIC BLOCKERS; and VASODILATOR AGENTS. Anti-Hypertensive,Anti-Hypertensive Agent,Anti-Hypertensive Drug,Antihypertensive,Antihypertensive Agent,Antihypertensive Drug,Anti-Hypertensive Agents,Anti-Hypertensive Drugs,Anti-Hypertensives,Antihypertensive Drugs,Antihypertensives,Agent, Anti-Hypertensive,Agent, Antihypertensive,Agents, Anti-Hypertensive,Agents, Antihypertensive,Anti Hypertensive,Anti Hypertensive Agent,Anti Hypertensive Agents,Anti Hypertensive Drug,Anti Hypertensive Drugs,Anti Hypertensives,Drug, Anti-Hypertensive,Drug, Antihypertensive,Drugs, Anti-Hypertensive,Drugs, Antihypertensive

Related Publications

M G Bogaert
September 1985, Klinische Wochenschrift,
M G Bogaert
January 1989, Hypertension (Dallas, Tex. : 1979),
M G Bogaert
January 1984, The Netherlands journal of medicine,
M G Bogaert
December 1986, Polski tygodnik lekarski (Warsaw, Poland : 1960),
M G Bogaert
January 1992, Journal of cardiovascular pharmacology,
Copied contents to your clipboard!