Protein synthesis, ribosomal protein S6 phosphorylation in vitro and the effects of amiloride: SDS gel electrophoresis studies in the Yoshida ascites tumor (AH 130) grown in vivo. 1986

R Comolli, and M G Leonardi, and P Alberti, and M Frigerio

Cell-free cytosolic extracts from the Yoshida (AH 130) rat ascites hepatoma cell line, grown in vivo, showed high ribosomal protein S6 kinase activity in vitro, as measured by transfer of 32P to exogenous 40S rat liver ribosomal subunits, in both exponential growing and stationary phase cells. A significant decrease of protein synthesis (3H-leucine incorporation into total cell protein) was found to occur in cells reaching the stationary phase of growth, suggesting that S6 phosphorylation was not tightly coupled to the rate of the intraperitoneal cell growth and of protein synthesis in these tumor cells. When the cell-free cytosolic extracts were prepared from cells exposed to amiloride, at concentrations that inhibit the Na+/H+ exchange, a decrease of S6 kinase activity was observed only in exponential growing cells, suggesting the possibility of coupling of the Na+/H+ exchange with phosphorylation of intracellular proteins in these tumor cells. Actually, stationary phase cells showed unchanged S6 kinase activity under the same conditions, possibly due to the extremely low Na+/H+ exchange activity, previously demonstrated (Cell Biol. Int. Rep., 1985, 9, 1017-1025). The present experiments support the hypothesis that the regulation of protein synthesis is not tightly coupled to phosphorylation-dephosphorylation cycles, at least of ribosomal protein S6, in cells characterized by a rather uncontrolled growth such as the Yoshida (AH 130) rat ascites hepatoma. In this connection, an elevated degree of protein phosphorylation, such as that of the ribosomal protein S6, could be a general phenomenon of neoplastic transformation.

UI MeSH Term Description Entries
D008114 Liver Neoplasms, Experimental Experimentally induced tumors of the LIVER. Hepatoma, Experimental,Hepatoma, Morris,Hepatoma, Novikoff,Experimental Hepatoma,Experimental Hepatomas,Experimental Liver Neoplasms,Hepatomas, Experimental,Neoplasms, Experimental Liver,Experimental Liver Neoplasm,Liver Neoplasm, Experimental,Morris Hepatoma,Novikoff Hepatoma
D010750 Phosphoproteins Phosphoprotein
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D002453 Cell Cycle The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE. Cell Division Cycle,Cell Cycles,Cell Division Cycles,Cycle, Cell,Cycle, Cell Division,Cycles, Cell,Cycles, Cell Division,Division Cycle, Cell,Division Cycles, Cell
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D000584 Amiloride A pyrazine compound inhibiting SODIUM reabsorption through SODIUM CHANNELS in renal EPITHELIAL CELLS. This inhibition creates a negative potential in the luminal membranes of principal cells, located in the distal convoluted tubule and collecting duct. Negative potential reduces secretion of potassium and hydrogen ions. Amiloride is used in conjunction with DIURETICS to spare POTASSIUM loss. (From Gilman et al., Goodman and Gilman's The Pharmacological Basis of Therapeutics, 9th ed, p705) Amidal,Amiduret Trom,Amiloberag,Amiloride Hydrochloride,Amiloride Hydrochloride, Anhydrous,Kaluril,Midamor,Midoride,Modamide,Anhydrous Amiloride Hydrochloride,Hydrochloride, Amiloride,Hydrochloride, Anhydrous Amiloride,Trom, Amiduret
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012269 Ribosomal Proteins Proteins found in ribosomes. They are believed to have a catalytic function in reconstituting biologically active ribosomal subunits. Proteins, Ribosomal,Ribosomal Protein,Protein, Ribosomal
D012270 Ribosomes Multicomponent ribonucleoprotein structures found in the CYTOPLASM of all cells, and in MITOCHONDRIA, and PLASTIDS. They function in PROTEIN BIOSYNTHESIS via GENETIC TRANSLATION. Ribosome

Related Publications

R Comolli, and M G Leonardi, and P Alberti, and M Frigerio
October 1988, Cell biology international reports,
R Comolli, and M G Leonardi, and P Alberti, and M Frigerio
April 1984, Cell biology international reports,
R Comolli, and M G Leonardi, and P Alberti, and M Frigerio
January 1966, Zeitschrift fur Krebsforschung,
R Comolli, and M G Leonardi, and P Alberti, and M Frigerio
December 1981, Biochimica et biophysica acta,
R Comolli, and M G Leonardi, and P Alberti, and M Frigerio
December 1994, Cancer letters,
R Comolli, and M G Leonardi, and P Alberti, and M Frigerio
August 1995, Biochemical Society transactions,
R Comolli, and M G Leonardi, and P Alberti, and M Frigerio
December 1996, Molecular and cellular biochemistry,
R Comolli, and M G Leonardi, and P Alberti, and M Frigerio
January 1985, Progress in clinical and biological research,
R Comolli, and M G Leonardi, and P Alberti, and M Frigerio
August 1993, Cancer letters,
Copied contents to your clipboard!