Actin polymerization. The mechanism of action of cytochalasin D. 1986

D W Goddette, and C Frieden

Fluorescence changes using actin covalently labeled with N-(1-pyrenyl)iodoacetamide have been used to determine the effect of cytochalasin D on actin polymerization. A mechanism for the effect of cytochalasin D on actin polymerization is presented, which explains the experimental observation of a cytochalasin D-induced increase in the initial rate of polymerization and a decrease in the final extent of the reaction. Central to this mechanism is the Mg2+-dependent formation of cytochalasin D-induced dimers. The dimers serve as nuclei to enhance the polymerization rate. Binding of Mg2+ to a low affinity site on the dimer induces a conformational change which can be observed as a rapid fluorescence increase. A subsequent time-dependent fluorescence decrease observed prior to polymerization appears to represent ATP hydrolysis resulting in dissociation of the dimer and release of actin monomers containing ADP. We postulate that a slow rate of exchange of ATP for bound ADP relative to hydrolysis results in the accumulation of monomers containing ADP. As these monomers have a high critical concentration, the final extent of polymerization is reduced dramatically. The Mg2+ dependence of the final extent of polymerization in the presence of cytochalasin D is also explained in the context of this mechanism.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D008840 Microfilament Proteins Monomeric subunits of primarily globular ACTIN and found in the cytoplasmic matrix of almost all cells. They are often associated with microtubules and may play a role in cytoskeletal function and/or mediate movement of the cell or the organelles within the cell. Actin Binding Protein,Actin-Binding Protein,Actin-Binding Proteins,Microfilament Protein,Actin Binding Proteins,Binding Protein, Actin,Protein, Actin Binding,Protein, Actin-Binding,Protein, Microfilament,Proteins, Actin-Binding,Proteins, Microfilament
D011108 Polymers Compounds formed by the joining of smaller, usually repeating, units linked by covalent bonds. These compounds often form large macromolecules (e.g., BIOPOLYMERS; PLASTICS). Polymer
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D002135 Calcium-Binding Proteins Proteins to which calcium ions are bound. They can act as transport proteins, regulator proteins, or activator proteins. They typically contain EF HAND MOTIFS. Calcium Binding Protein,Calcium-Binding Protein,Calcium Binding Proteins,Binding Protein, Calcium,Binding Proteins, Calcium,Protein, Calcium Binding,Protein, Calcium-Binding
D003572 Cytochalasins 11- to 14-membered macrocyclic lactones with a fused isoindolone. Members with INDOLES attached at the C10 position are called chaetoglobosins. They are produced by various fungi. Some members interact with ACTIN and inhibit CYTOKINESIS.
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D005453 Fluorescence The property of emitting radiation while being irradiated. The radiation emitted is usually of longer wavelength than that incident or absorbed, e.g., a substance can be irradiated with invisible radiation and emit visible light. X-ray fluorescence is used in diagnosis.
D006868 Hydrolysis The process of cleaving a chemical compound by the addition of a molecule of water.

Related Publications

D W Goddette, and C Frieden
August 1980, Biochemical and biophysical research communications,
D W Goddette, and C Frieden
June 1980, Cell,
D W Goddette, and C Frieden
October 1993, Molecular reproduction and development,
D W Goddette, and C Frieden
August 1979, Zeitschrift fur Naturforschung. Section C, Biosciences,
D W Goddette, and C Frieden
September 1975, The Journal of experimental zoology,
D W Goddette, and C Frieden
February 1981, Biochemistry,
D W Goddette, and C Frieden
January 1976, Journal of supramolecular structure,
Copied contents to your clipboard!