Nuclear magnetic resonance study of the isotope exchange of the proximal histidyl ring labile protons in hemoglobin A. The exchange rates and mechanisms of individual subunits in deoxy and oxy-hemoglobin. 1986

K H Han, and G N La Mar

Proton nuclear magnetic resonance spectroscopy has been used to investigate the rates and mechanism of exchange with deuterium of the proximal histidyl imidazole labile ring proton in deoxy and oxy-hemoglobin A. The resolved signals for the two subunits indicate dynamic heterogeneity, with the exchange rate always faster in the alpha than the beta subunits, suggesting a lower dynamic stability for the alpha subunit. The activation energy for the exchange in both subunits (approximately 25 kcal; 1 cal = 4.184 J) indicates that exchange proceeds via an intermediate far from denaturation or global unfolding. The pH profiles for both hemoglobin states reflect the EX2 mechanism for both subunits. While the base catalysis expected for an iron-bound imidazole is observed in all cases, there are important differences in both rates and mechanisms between the subunits. In deoxy-hemoglobin, both base-catalyzed and water-assisted exchange contribute to the alpha subunit, but only the former to the beta subunit. For oxy-hemoglobin, the base-catalysis is retained for both subunits, but the slope is considerably less for the alpha relative to the beta subunit. Thus the two subunits in the two states of hemoglobin differ both in mechanisms and in the inherent dynamic stability reflected in any one mechanism. The relationships of the proximal histidyl ring NH exchange rates to previously characterized subsets of allosterically responsive protons in hemoglobin A is briefly discussed.

UI MeSH Term Description Entries
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D010108 Oxyhemoglobins A compound formed by the combination of hemoglobin and oxygen. It is a complex in which the oxygen is bound directly to the iron without causing a change from the ferrous to the ferric state. Oxycobalt Hemoglobin,Oxycobalthemoglobin,Oxyhemoglobin,Hemoglobin, Oxycobalt
D011522 Protons Stable elementary particles having the smallest known positive charge, found in the nuclei of all elements. The proton mass is less than that of a neutron. A proton is the nucleus of the light hydrogen atom, i.e., the hydrogen ion. Hydrogen Ions,Hydrogen Ion,Ion, Hydrogen,Ions, Hydrogen,Proton
D006441 Hemoglobin A Normal adult human hemoglobin. The globin moiety consists of two alpha and two beta chains.
D006454 Hemoglobins The oxygen-carrying proteins of ERYTHROCYTES. They are found in all vertebrates and some invertebrates. The number of globin subunits in the hemoglobin quaternary structure differs between species. Structures range from monomeric to a variety of multimeric arrangements. Eryhem,Ferrous Hemoglobin,Hemoglobin,Hemoglobin, Ferrous
D006639 Histidine An essential amino acid that is required for the production of HISTAMINE. Histidine, L-isomer,L-Histidine,Histidine, L isomer,L-isomer Histidine
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000494 Allosteric Regulation The modification of the reactivity of ENZYMES by the binding of effectors to sites (ALLOSTERIC SITES) on the enzymes other than the substrate BINDING SITES. Regulation, Allosteric,Allosteric Regulations,Regulations, Allosteric
D046911 Macromolecular Substances Compounds and molecular complexes that consist of very large numbers of atoms and are generally over 500 kDa in size. In biological systems macromolecular substances usually can be visualized using ELECTRON MICROSCOPY and are distinguished from ORGANELLES by the lack of a membrane structure. Macromolecular Complexes,Macromolecular Compounds,Macromolecular Compounds and Complexes,Complexes, Macromolecular,Compounds, Macromolecular,Substances, Macromolecular

Related Publications

K H Han, and G N La Mar
May 1979, Journal of molecular biology,
K H Han, and G N La Mar
October 1973, Proceedings of the National Academy of Sciences of the United States of America,
K H Han, and G N La Mar
October 1972, Journal of molecular biology,
Copied contents to your clipboard!