Analysis of the ends of bacteriophage Mu using site-directed mutagenesis. 1986

M A Groenen, and P van de Putte

We showed previously that two regions at the left end (L1 and L3) and one at the right end (R2) of bacteriophage Mu are essential for transposition. These regions all contain a 22 base-pair sequence with the consensus YGtTTCAYtNNAARYRCGAAAR, where Y and R represent any pyrimidine and purine, respectively. The Mu A protein binds to these regions in vitro, and weakly to sequences between nucleotides 1 and 30 of the right end (R1) and between nucleotides 110 and 135 of the left end (L2). These weak A binding sites contain the sequence AARYRCGAAAR. Here we show, using site-directed mutagenesis, that the weak A binding sites are essential for transposition. Mutations in these weak A binding sites have a greater effect on transposition than mutations of corresponding base-pairs in the stronger A binding sites, located adjacent to these weak A binding sites. We confirm the importance of several of the conserved base-pairs in the consensus sequence YGtTTCAYtNNAARYRCGAAAR. The base-pairs in the A binding sites that are shown to be essential for transposition are all conserved in the ends of the related bacteriophage D108. Furthermore, it is shown that the distance of 90 base-pairs between the two regions at the left end (L1 and L2L3) is essential.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D004251 DNA Transposable Elements Discrete segments of DNA which can excise and reintegrate to another site in the genome. Most are inactive, i.e., have not been found to exist outside the integrated state. DNA transposable elements include bacterial IS (insertion sequence) elements, Tn elements, the maize controlling elements Ac and Ds, Drosophila P, gypsy, and pogo elements, the human Tigger elements and the Tc and mariner elements which are found throughout the animal kingdom. DNA Insertion Elements,DNA Transposons,IS Elements,Insertion Sequence Elements,Tn Elements,Transposable Elements,Elements, Insertion Sequence,Sequence Elements, Insertion,DNA Insertion Element,DNA Transposable Element,DNA Transposon,Element, DNA Insertion,Element, DNA Transposable,Element, IS,Element, Insertion Sequence,Element, Tn,Element, Transposable,Elements, DNA Insertion,Elements, DNA Transposable,Elements, IS,Elements, Tn,Elements, Transposable,IS Element,Insertion Element, DNA,Insertion Elements, DNA,Insertion Sequence Element,Sequence Element, Insertion,Tn Element,Transposable Element,Transposable Element, DNA,Transposable Elements, DNA,Transposon, DNA,Transposons, DNA
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D001435 Bacteriophages Viruses whose hosts are bacterial cells. Phages,Bacteriophage,Phage
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining

Related Publications

M A Groenen, and P van de Putte
December 1984, Cell,
M A Groenen, and P van de Putte
May 1990, Nucleic acids research,
M A Groenen, and P van de Putte
December 1976, Nature,
M A Groenen, and P van de Putte
January 1978, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
M A Groenen, and P van de Putte
January 1994, Journal of molecular biology,
M A Groenen, and P van de Putte
January 2003, Methods in molecular biology (Clifton, N.J.),
M A Groenen, and P van de Putte
June 1995, BioTechniques,
M A Groenen, and P van de Putte
July 1996, Nucleic acids research,
M A Groenen, and P van de Putte
August 1978, Nature,
M A Groenen, and P van de Putte
May 1984, Journal of molecular biology,
Copied contents to your clipboard!