Intramolecular recombination between transfected repeated sequences in mammalian cells is nonconservative. 1986

S Chakrabarti, and M M Seidman

When plasmids carrying a fragmented gene with segments present as direct repeats are introduced into mammalian cells, recombination or gene conversion between the repeated sequences can reconstruct the gene. Intramolecular recombination leads to the deletion of the intervening sequences and the loss of one copy of the repeat. This process is known to be stimulated by double-strand breaks. Two current models for recombination in eucaryotic cells propose that the reaction is initiated by double-strand breaks, but differ in their predictions as to the fate of the intervening sequences. One model suggests that these sequences are always lost, while the other indicates that the reaction will be conservative as a function of the position of the double-strand break. We have constructed a plasmid in which two overlapping portions of the simian virus 40 early region, which contains the origin and T-antigen gene, are present as direct repeats separated by sequences containing a plasmid with a simian virus 40 origin of replication. Recombination across the repeated segments could produce a plasmid with an origin of replication and/or a plasmid with a gene for a functional T-antigen which would drive the replication of both. Introduction of this construction into African green monkey kidney cells, without coinfection, establishes a condition in which the products of the recombination or gene conversion can be interpreted unambiguously. We find that the majority of the reconstruction reactions are nonconservative.

UI MeSH Term Description Entries
D008322 Mammals Warm-blooded vertebrate animals belonging to the class Mammalia, including all that possess hair and suckle their young. Mammalia,Mammal
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011995 Recombination, Genetic Production of new arrangements of DNA by various mechanisms such as assortment and segregation, CROSSING OVER; GENE CONVERSION; GENETIC TRANSFORMATION; GENETIC CONJUGATION; GENETIC TRANSDUCTION; or mixed infection of viruses. Genetic Recombination,Recombination,Genetic Recombinations,Recombinations,Recombinations, Genetic
D012091 Repetitive Sequences, Nucleic Acid Sequences of DNA or RNA that occur in multiple copies. There are several types: INTERSPERSED REPETITIVE SEQUENCES are copies of transposable elements (DNA TRANSPOSABLE ELEMENTS or RETROELEMENTS) dispersed throughout the genome. TERMINAL REPEAT SEQUENCES flank both ends of another sequence, for example, the long terminal repeats (LTRs) on RETROVIRUSES. Variations may be direct repeats, those occurring in the same direction, or inverted repeats, those opposite to each other in direction. TANDEM REPEAT SEQUENCES are copies which lie adjacent to each other, direct or inverted (INVERTED REPEAT SEQUENCES). DNA Repetitious Region,Direct Repeat,Genes, Selfish,Nucleic Acid Repetitive Sequences,Repetitive Region,Selfish DNA,Selfish Genes,DNA, Selfish,Repetitious Region, DNA,Repetitive Sequence,DNA Repetitious Regions,DNAs, Selfish,Direct Repeats,Gene, Selfish,Repeat, Direct,Repeats, Direct,Repetitious Regions, DNA,Repetitive Regions,Repetitive Sequences,Selfish DNAs,Selfish Gene
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014162 Transfection The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES. Transfections

Related Publications

S Chakrabarti, and M M Seidman
January 1984, Cold Spring Harbor symposia on quantitative biology,
S Chakrabarti, and M M Seidman
July 1992, Proceedings of the National Academy of Sciences of the United States of America,
S Chakrabarti, and M M Seidman
December 1990, Molecular and cellular biology,
S Chakrabarti, and M M Seidman
August 1992, Analytical biochemistry,
Copied contents to your clipboard!