Transcriptional role for the nontranscribed spacer of rat ribosomal DNA. 1986

B G Cassidy, and H F Yang-Yen, and L I Rothblum

In vitro transcription of the rat rRNA gene led to the identification of a region within a 3.4-kilobase fragment of the nontranscribed spacer (NTS) which significantly increased the transcription of rat ribosomal DNA. Promoter constructs containing this region were transcribed up to 17-fold more efficiently in vitro than templates with only 167 or 286 base pairs of NTS. This effect was also observed when the 3.4-kb fragment of the NTS was subcloned in the opposite orientation and 4 kb upstream of the promoter. The region responsible for the enhanced level of transcription was found between -286 and -1018. The results of order-of-addition experiments suggested that the enhanced level of transcription was the result of the formation of a stable complex between a trans-acting factor and the nontranscribed spacer. DNA-protein binding assays demonstrated that the same region of the NTS determined to have enhancer activity also specifically bound a proteinase K-sensitive factor present in nuclear extracts. The sequence of this region was not found to have any significant homology with the promoter of the rat rRNA gene. This is the first report to assign a transcriptional role to the NTS of a mammalian rRNA gene.

UI MeSH Term Description Entries
D010450 Endopeptidases A subclass of PEPTIDE HYDROLASES that catalyze the internal cleavage of PEPTIDES or PROTEINS. Endopeptidase,Peptide Peptidohydrolases
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D002872 Chromosome Deletion Actual loss of portion of a chromosome. Monosomy, Partial,Partial Monosomy,Deletion, Chromosome,Deletions, Chromosome,Monosomies, Partial,Partial Monosomies
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D004275 DNA, Ribosomal DNA sequences encoding RIBOSOMAL RNA and the segments of DNA separating the individual ribosomal RNA genes, referred to as RIBOSOMAL SPACER DNA. Ribosomal DNA,rDNA
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription
D015245 Deoxyribonuclease BamHI One of the Type II site-specific deoxyribonucleases (EC 3.1.21.4). It recognizes and cleaves the sequence G/GATCC at the slash. BamHI is from Bacillus amyloliquefaciens N. Numerous isoschizomers have been identified. EC 3.1.21.-. DNA Restriction Enzyme BamHI,Deoxyribonuclease BstI,Endonuclease BamHI,AacI Endonuclease,AaeI Endonuclease,AccEBI Endonuclease,AliI Endonuclease,ApaCI Endonuclease,BamFI Endonuclease,BamHI Deoxyribonuclease,BamHI Endonuclease,BamI Endonuclease,BamKI Endonuclease,BamNI Endonuclease,BnaI Endonuclease,BstI Deoxyribonuclease,BstI Endonuclease,DdsI Endonuclease,Endonuclease AacI,Endonuclease AaeI,Endonuclease AccEBI,Endonuclease Ali12257I,Endonuclease Ali12258I,Endonuclease AliI,Endonuclease BamFI,Endonuclease BamKI,Endonuclease BamNI,Endonuclease BnaI,Endonuclease Bst1503,Endonuclease BstI,Endonuclease DdsI,Endonuclease GdoI,Endonuclease GinI,Endonuclease GoxI,Endonuclease MleI,Endonuclease NasBI,Endonuclease NspSAIV,Endonuclease RhsI,Endonuclease SolI,GdoI Endonuclease,GinI Endonuclease,GoxI Endonuclease,MleI Endonuclease,NasBI Endonuclease,NspSAIV Endonuclease,RhsI Endonuclease,SolI Endonuclease,Endonuclease, ApaCI,Endonuclease, SolI,SolI, Endonuclease
D015252 Deoxyribonucleases, Type II Site-Specific Enzyme systems containing a single subunit and requiring only magnesium for endonucleolytic activity. The corresponding modification methylases are separate enzymes. The systems recognize specific short DNA sequences and cleave either within, or at a short specific distance from, the recognition sequence to give specific double-stranded fragments with terminal 5'-phosphates. Enzymes from different microorganisms with the same specificity are called isoschizomers. EC 3.1.21.4. DNA Restriction Enzymes, Type II,DNase, Site-Specific, Type II,Restriction Endonucleases, Type II,Type II Restriction Enzymes,DNase, Site Specific, Type II,Deoxyribonucleases, Type II, Site Specific,Deoxyribonucleases, Type II, Site-Specific,Site-Specific DNase, Type II,Type II Site Specific DNase,Type II Site Specific Deoxyribonucleases,Type II Site-Specific DNase,Type II Site-Specific Deoxyribonucleases,Deoxyribonucleases, Type II Site Specific,Site Specific DNase, Type II

Related Publications

B G Cassidy, and H F Yang-Yen, and L I Rothblum
July 1986, Nucleic acids research,
B G Cassidy, and H F Yang-Yen, and L I Rothblum
November 1982, Nucleic acids research,
B G Cassidy, and H F Yang-Yen, and L I Rothblum
May 1982, Proceedings of the National Academy of Sciences of the United States of America,
B G Cassidy, and H F Yang-Yen, and L I Rothblum
September 2006, Molecular biology of the cell,
B G Cassidy, and H F Yang-Yen, and L I Rothblum
April 1990, Nucleic acids research,
B G Cassidy, and H F Yang-Yen, and L I Rothblum
November 2004, Journal of dermatological science,
B G Cassidy, and H F Yang-Yen, and L I Rothblum
January 1981, Chromosoma,
B G Cassidy, and H F Yang-Yen, and L I Rothblum
December 2000, Journal of clinical microbiology,
Copied contents to your clipboard!