Humoral and cell-mediated immunity in neonates with herpes simplex virus infection. 1987

W M Sullender, and J L Miller, and L L Yasukawa, and J S Bradley, and S B Black, and A S Yeager, and A M Arvin

Fifty-nine neonates with herpes simplex virus (HSV) infection were evaluated with use of assays for neutralizing antibody (NAb), lymphocyte transformation (LT), alpha interferon production, and virus-specific antibody (immunoblots). Infants with disseminated disease or onset in the first week of life were more likely to lack NAb. Patients treated with vidarabine were more likely than those treated with acyclovir to develop a fourfold rise in NAb titer. Infants with encephalitis showed a broader spectrum of IgG and IgM antibody reactivity against HSV proteins by immunoblotting than did those who had earlier onset of mucocutaneous illness. Only 10 of 33 infants had HSV-specific LT, compared with eight of eight adults with primary HSV. Neonates with positive LT were more likely to show a fourfold rise in NAb titer. In vitro alpha interferon production was diminished in infants, compared with values in adults.

UI MeSH Term Description Entries
D007111 Immunity, Cellular Manifestations of the immune response which are mediated by antigen-sensitized T-lymphocytes via lymphokines or direct cytotoxicity. This takes place in the absence of circulating antibody or where antibody plays a subordinate role. Cell-Mediated Immunity,Cellular Immune Response,Cell Mediated Immunity,Cell-Mediated Immunities,Cellular Immune Responses,Cellular Immunities,Cellular Immunity,Immune Response, Cellular,Immune Responses, Cellular,Immunities, Cell-Mediated,Immunities, Cellular,Immunity, Cell-Mediated,Response, Cellular Immune
D007112 Immunity, Maternally-Acquired Resistance to a disease-causing agent induced by the introduction of maternal immunity into the fetus by transplacental transfer or into the neonate through colostrum and milk. Fetal Immunity, Maternally-Acquired,Maternally-Acquired Immunity,Neonatal Immunity, Maternally-Acquired,Immunity, Maternally Acquired,Fetal Immunities, Maternally-Acquired,Fetal Immunity, Maternally Acquired,Immunity, Maternally-Acquired Fetal,Immunity, Maternally-Acquired Neonatal,Maternally Acquired Immunities,Maternally Acquired Immunity,Maternally-Acquired Fetal Immunities,Maternally-Acquired Fetal Immunity,Maternally-Acquired Immunities,Maternally-Acquired Neonatal Immunities,Maternally-Acquired Neonatal Immunity,Neonatal Immunities, Maternally-Acquired,Neonatal Immunity, Maternally Acquired
D007231 Infant, Newborn An infant during the first 28 days after birth. Neonate,Newborns,Infants, Newborn,Neonates,Newborn,Newborn Infant,Newborn Infants
D007370 Interferon Type I Interferon secreted by leukocytes, fibroblasts, or lymphoblasts in response to viruses or interferon inducers other than mitogens, antigens, or allo-antigens. They include alpha- and beta-interferons (INTERFERON-ALPHA and INTERFERON-BETA). Interferons Type I,Type I Interferon,Type I Interferons,Interferon, Type I,Interferons, Type I
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D009500 Neutralization Tests The measurement of infection-blocking titer of ANTISERA by testing a series of dilutions for a given virus-antiserum interaction end-point, which is generally the dilution at which tissue cultures inoculated with the serum-virus mixtures demonstrate cytopathology (CPE) or the dilution at which 50% of test animals injected with serum-virus mixtures show infectivity (ID50) or die (LD50). Neutralization Test,Test, Neutralization,Tests, Neutralization
D006561 Herpes Simplex A group of acute infections caused by herpes simplex virus type 1 or type 2 that is characterized by the development of one or more small fluid-filled vesicles with a raised erythematous base on the skin or mucous membrane. It occurs as a primary infection or recurs due to a reactivation of a latent infection. (Dorland, 27th ed.) Herpes Simplex Virus Infection
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000212 Acyclovir A GUANOSINE analog that acts as an antimetabolite. Viruses are especially susceptible. Used especially against herpes. Acycloguanosine,9-((2-Hydroxyethoxy)methyl)guanine,Aci-Sanorania,Acic,Aciclobeta,Aciclostad,Aciclovir,Aciclovir Alonga,Aciclovir-Sanorania,Acifur,Acipen Solutab,Acivir,Activir,Acyclo-V,Acyclovir Sodium,Antiherpes Creme,Avirax,Cicloferon,Clonorax,Cusiviral,Genvir,Herpetad,Herpofug,Herpotern,Herpoviric,Isavir,Laciken,Mapox,Maynar,Milavir,Opthavir,Supraviran,Viclovir,Vipral,Virax-Puren,Virherpes,Virmen,Virolex,Virupos,Virzin,Wellcome-248U,Zoliparin,Zovirax,Zyclir,aciclovir von ct,Aci Sanorania,Aciclovir Sanorania,Acyclo V,Alonga, Aciclovir,Sodium, Acyclovir,Solutab, Acipen,Virax Puren,ViraxPuren,Wellcome 248U,Wellcome248U
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults

Related Publications

W M Sullender, and J L Miller, and L L Yasukawa, and J S Bradley, and S B Black, and A S Yeager, and A M Arvin
July 1991, Monatsschrift Kinderheilkunde : Organ der Deutschen Gesellschaft fur Kinderheilkunde,
W M Sullender, and J L Miller, and L L Yasukawa, and J S Bradley, and S B Black, and A S Yeager, and A M Arvin
January 1993, Immunodeficiency,
W M Sullender, and J L Miller, and L L Yasukawa, and J S Bradley, and S B Black, and A S Yeager, and A M Arvin
September 1980, The Journal of infectious diseases,
W M Sullender, and J L Miller, and L L Yasukawa, and J S Bradley, and S B Black, and A S Yeager, and A M Arvin
January 1982, Archives of virology,
W M Sullender, and J L Miller, and L L Yasukawa, and J S Bradley, and S B Black, and A S Yeager, and A M Arvin
February 1974, The Journal of infectious diseases,
W M Sullender, and J L Miller, and L L Yasukawa, and J S Bradley, and S B Black, and A S Yeager, and A M Arvin
December 1973, American journal of clinical pathology,
W M Sullender, and J L Miller, and L L Yasukawa, and J S Bradley, and S B Black, and A S Yeager, and A M Arvin
January 1979, Pediatriia,
W M Sullender, and J L Miller, and L L Yasukawa, and J S Bradley, and S B Black, and A S Yeager, and A M Arvin
January 2005, Acta virologica,
W M Sullender, and J L Miller, and L L Yasukawa, and J S Bradley, and S B Black, and A S Yeager, and A M Arvin
July 1982, The Journal of general virology,
W M Sullender, and J L Miller, and L L Yasukawa, and J S Bradley, and S B Black, and A S Yeager, and A M Arvin
June 1982, The Journal of general virology,
Copied contents to your clipboard!