Structural and functional analysis of the MAL1 locus of Saccharomyces cerevisiae. 1986

M J Charron, and R A Dubin, and C A Michels

We describe the isolation of a 22.6-kilobase fragment of DNA containing the MAL1 locus of Saccharomyces cerevisiae. Our results demonstrate that the MAL1 locus, like the MAL6 locus, is a complex locus containing three genes. These genes were organized similarly to their MAL6 counterparts. We refer to them as MAL11, MAL12, and MAL13 and show that they are functionally homologous to the MAL61 (encoding maltose permease), MAL62 (encoding maltase), and MAL63 (encoding the positive regulator) genes of the MAL6 locus. Transcription from each of the three genes was analyzed in a strain carrying the undisrupted MAL1 locus and in strains carrying single disruptions in each of the MAL1 genes. The MAL1 and MAL1 loci were found to be highly sequence homologous and conserved throughout the region containing these three genes. The strain used to isolate the MAL1 locus also carried the tightly linked SUC1 gene. The SUC1 gene was found to be located on the same 22.6-kilobase fragment containing the MAL1 locus and 5 kilobases from the 3' end of the MAL12 gene. The meaning of these results with regard to the mechanism of regulation of maltose fermentation is discussed.

UI MeSH Term Description Entries
D009004 Monosaccharide Transport Proteins A large group of membrane transport proteins that shuttle MONOSACCHARIDES across CELL MEMBRANES. Hexose Transport Proteins,Band 4.5 Preactin,Erythrocyte Band 4.5 Protein,Glucose Transport-Inducing Protein,Hexose Transporter,4.5 Preactin, Band,Glucose Transport Inducing Protein,Preactin, Band 4.5,Proteins, Monosaccharide Transport,Transport Proteins, Hexose,Transport Proteins, Monosaccharide,Transport-Inducing Protein, Glucose
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D002872 Chromosome Deletion Actual loss of portion of a chromosome. Monosomy, Partial,Partial Monosomy,Deletion, Chromosome,Deletions, Chromosome,Monosomies, Partial,Partial Monosomies
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D005800 Genes, Fungal The functional hereditary units of FUNGI. Fungal Genes,Fungal Gene,Gene, Fungal
D005809 Genes, Regulator Genes which regulate or circumscribe the activity of other genes; specifically, genes which code for PROTEINS or RNAs which have GENE EXPRESSION REGULATION functions. Gene, Regulator,Regulator Gene,Regulator Genes,Regulatory Genes,Gene, Regulatory,Genes, Regulatory,Regulatory Gene
D005838 Genotype The genetic constitution of the individual, comprising the ALLELES present at each GENETIC LOCUS. Genogroup,Genogroups,Genotypes

Related Publications

M J Charron, and R A Dubin, and C A Michels
January 1984, Molecular & general genetics : MGG,
M J Charron, and R A Dubin, and C A Michels
September 2006, Journal of molecular biology,
M J Charron, and R A Dubin, and C A Michels
October 2005, Molecular genetics and genomics : MGG,
M J Charron, and R A Dubin, and C A Michels
January 1972, Archiv fur Genetik,
M J Charron, and R A Dubin, and C A Michels
February 1972, Genetics,
M J Charron, and R A Dubin, and C A Michels
June 1998, Yeast (Chichester, England),
M J Charron, and R A Dubin, and C A Michels
April 2002, Yeast (Chichester, England),
Copied contents to your clipboard!