[Cloning of pectate-lyase genes of Erwinia chrysanthemi in Escherichia coli cells]. 1986

A N Evtushenkov, and V E Shevchik, and Iu K Fomichev

Erwinia chrysanthemi DNA fragment digested by restriction endonuclease EcoRI and carrying the gene EC16 determining the synthesis of pectatelyase with Rf 0.20 and mol. mass 40kD has been cloned in plasmid pUC 9 plasmid in Escherichia coli HB101 cells. Three genes for pectatelyases of Erwinia chrysanthemi ENA49 have been cloned in vector phage lambda 47.1 in Escherichia coli cells. Two genes determining the synthesis of pectatelyases with Rf 0.06 and 0.19 and mol. masses 40 kD and 39 kD have been cloned as a part of an 7 kb Eco RI-fragment, that suggested their close location on the chromosome of Erwinia chrysanthemi ENA49. All of the cloned pectatelyase genes are expressed constitutively with pectatelyases accumulating in periplasm and being unable to secret into the cultural medium.

UI MeSH Term Description Entries
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011133 Polysaccharide-Lyases A group of carbon-oxygen lyases. These enzymes catalyze the breakage of a carbon-oxygen bond in polysaccharides leading to an unsaturated product and the elimination of an alcohol. EC 4.2.2. Polysaccharide Lyase,Polysaccharide-Lyase,Lyase, Polysaccharide,Polysaccharide Lyases
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D004885 Erwinia A genus of gram-negative, facultatively anaerobic, rod-shaped bacteria whose organisms are associated with plants as pathogens, saprophytes, or as constituents of the epiphytic flora.
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D014169 Transformation, Bacterial The heritable modification of the properties of a competent bacterium by naked DNA from another source. The uptake of naked DNA is a naturally occuring phenomenon in some bacteria. It is often used as a GENE TRANSFER TECHNIQUE. Bacterial Transformation

Related Publications

A N Evtushenkov, and V E Shevchik, and Iu K Fomichev
March 1985, Journal of bacteriology,
A N Evtushenkov, and V E Shevchik, and Iu K Fomichev
September 1984, Journal of bacteriology,
A N Evtushenkov, and V E Shevchik, and Iu K Fomichev
March 1985, The EMBO journal,
A N Evtushenkov, and V E Shevchik, and Iu K Fomichev
September 1989, Gene,
A N Evtushenkov, and V E Shevchik, and Iu K Fomichev
January 1985, Gene,
A N Evtushenkov, and V E Shevchik, and Iu K Fomichev
November 1986, Journal of bacteriology,
A N Evtushenkov, and V E Shevchik, and Iu K Fomichev
July 1986, Journal of bacteriology,
A N Evtushenkov, and V E Shevchik, and Iu K Fomichev
September 1987, Molecular & general genetics : MGG,
A N Evtushenkov, and V E Shevchik, and Iu K Fomichev
March 1989, Molecular microbiology,
A N Evtushenkov, and V E Shevchik, and Iu K Fomichev
January 1986, Gene,
Copied contents to your clipboard!