Simian virus 40 DNA replication in vitro: purification and characterization of replication factors from mouse cells. 1986

H Ariga

We have previously developed simian virus 40 (SV40) DNA replication system in vitro (Ariga and Sugano, J. Virol. 48, 481, 1983). This system is composed of human HeLa or mouse FM3A nuclear extract and cytoplasmic extract of SV40 infected CosI cells. Here FM3A nuclear extract was fractionated by DEAE Sephacel and single-stranded DNA cellulose chromatography into three components required for accurate in vitro SV40 DNA replication. One fraction (A fraction) contained DNA polymerase-primase, and the second component (B fraction) contained DNA topoisomerase. Third component was further purified to near homogenuity using DEAE-Sephacel, single-stranded DNA cellulose, and glycerol gradient centrifugation. The purified protein (named factor I) bound to the origin containing fragment of SV40 DNA. The factor I enhanced the initiation of SV40 DNA replication catalyzed by SV40 infected CosI cytoplasm alone. When all four fractions consisting of A, B fractions, factor I, and SV40 infected CosI cytoplasm were mixed together, the system was reconstituted, meaning that initiation and subsequent elongation were completed to generate the full sized daughter molecules.

UI MeSH Term Description Entries
D004259 DNA-Directed DNA Polymerase DNA-dependent DNA polymerases found in bacteria, animal and plant cells. During the replication process, these enzymes catalyze the addition of deoxyribonucleotide residues to the end of a DNA strand in the presence of DNA as template-primer. They also possess exonuclease activity and therefore function in DNA repair. DNA Polymerase,DNA Polymerases,DNA-Dependent DNA Polymerases,DNA Polymerase N3,DNA Dependent DNA Polymerases,DNA Directed DNA Polymerase,DNA Polymerase, DNA-Directed,DNA Polymerases, DNA-Dependent,Polymerase N3, DNA,Polymerase, DNA,Polymerase, DNA-Directed DNA,Polymerases, DNA,Polymerases, DNA-Dependent DNA
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D004264 DNA Topoisomerases, Type I DNA TOPOISOMERASES that catalyze ATP-independent breakage of one of the two strands of DNA, passage of the unbroken strand through the break, and rejoining of the broken strand. DNA Topoisomerases, Type I enzymes reduce the topological stress in the DNA structure by relaxing the superhelical turns and knotted rings in the DNA helix. DNA Nicking-Closing Protein,DNA Relaxing Enzyme,DNA Relaxing Protein,DNA Topoisomerase,DNA Topoisomerase I,DNA Topoisomerase III,DNA Topoisomerase III alpha,DNA Topoisomerase III beta,DNA Untwisting Enzyme,DNA Untwisting Protein,TOP3 Topoisomerase,TOP3alpha,TOPO IIIalpha,Topo III,Topoisomerase III,Topoisomerase III beta,Topoisomerase IIIalpha,Topoisomerase IIIbeta,DNA Nicking-Closing Proteins,DNA Relaxing Enzymes,DNA Type 1 Topoisomerase,DNA Untwisting Enzymes,DNA Untwisting Proteins,Topoisomerase I,Type I DNA Topoisomerase,III beta, Topoisomerase,III, DNA Topoisomerase,III, Topo,III, Topoisomerase,IIIalpha, TOPO,IIIalpha, Topoisomerase,IIIbeta, Topoisomerase,Topoisomerase III, DNA,Topoisomerase, TOP3,beta, Topoisomerase III
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012316 RNA Nucleotidyltransferases Enzymes that catalyze the template-directed incorporation of ribonucleotides into an RNA chain. EC 2.7.7.-. Nucleotidyltransferases, RNA
D013539 Simian virus 40 A species of POLYOMAVIRUS originally isolated from Rhesus monkey kidney tissue. It produces malignancy in human and newborn hamster kidney cell cultures. SV40 Virus,Vacuolating Agent,Polyomavirus macacae,SV 40 Virus,SV 40 Viruses,SV40 Viruses,Vacuolating Agents
D014779 Virus Replication The process of intracellular viral multiplication, consisting of the synthesis of PROTEINS; NUCLEIC ACIDS; and sometimes LIPIDS, and their assembly into a new infectious particle. Viral Replication,Replication, Viral,Replication, Virus,Replications, Viral,Replications, Virus,Viral Replications,Virus Replications
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D019915 DNA Primase A single-stranded DNA-dependent RNA polymerase that functions to initiate, or prime, DNA synthesis by synthesizing oligoribonucleotide primers. EC 2.7.7.-. Primase,Bacteriophage T7 Gene 4 Protein,DnaG (Primase),DnaG Gene Product,DnaG Protein,T7 DNA Primase-Helicase Protein,T7 DNA-Priming Protein,T7 gene-4 protein,DNA-Priming Protein, T7,Primase, DNA,Protein, T7 DNA-Priming,T7 DNA Primase Helicase Protein,T7 DNA Priming Protein,T7 gene 4 protein

Related Publications

H Ariga
November 1984, Proceedings of the National Academy of Sciences of the United States of America,
H Ariga
April 1988, Proceedings of the National Academy of Sciences of the United States of America,
H Ariga
January 1997, Critical reviews in biochemistry and molecular biology,
H Ariga
May 1993, Molecular and cellular biology,
H Ariga
February 1987, Proceedings of the National Academy of Sciences of the United States of America,
H Ariga
August 1987, The Journal of biological chemistry,
Copied contents to your clipboard!