Site-specific gap-misrepair mutagenesis by O4-ethylthymine. 1987

H L Duran, and A A Wani

The mutagenicity of the DNA base O-alkylation adduct, O4-ethylthymine, specifically incorporated into the plasmid vector pUC8 at the unique SalI and HincII recognition sites, was studied in vivo. Escherichia coli, Micrococcus luteus and AMV DNA polymerases catalyze the incorporation of O4-ethylTMP against template adenine and guanine residues, resulting in DNA sequence alteration during subsequent replication in the host E. coli K-12 strain JM83. The greatest mutation frequency was observed with error-prone AMV DNA polymerase. High levels of cognate restriction endonuclease-resistant mutant plasmid isolates were obtained by gap replication repair in the presence of O4-ethylTTP. The yields of mutant isolates were dependent upon the relative concentration of the competing pyrimidine deoxynucleoside triphosphates, TTP and dCTP, in the misreplication reaction. Repair of incorporated O4-ethylTMP of plasmid DNA by in vitro treatment with specific alkyltransferase, prior to transformation in the host, effectively increases the mutagenic efficiency of the adduct. The results obtained are consistent with the high miscoding potential O4-ethylthymine observed in in vitro studies and its ability to base-pair with noncomplementary guanine residues in DNA.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D003845 Deoxycytosine Nucleotides Cytosine nucleotides which contain deoxyribose as the sugar moiety. Deoxycytidine Phosphates,Nucleotides, Deoxycytosine,Phosphates, Deoxycytidine
D004259 DNA-Directed DNA Polymerase DNA-dependent DNA polymerases found in bacteria, animal and plant cells. During the replication process, these enzymes catalyze the addition of deoxyribonucleotide residues to the end of a DNA strand in the presence of DNA as template-primer. They also possess exonuclease activity and therefore function in DNA repair. DNA Polymerase,DNA Polymerases,DNA-Dependent DNA Polymerases,DNA Polymerase N3,DNA Dependent DNA Polymerases,DNA Directed DNA Polymerase,DNA Polymerase, DNA-Directed,DNA Polymerases, DNA-Dependent,Polymerase N3, DNA,Polymerase, DNA,Polymerase, DNA-Directed DNA,Polymerases, DNA,Polymerases, DNA-Dependent DNA
D004260 DNA Repair The removal of DNA LESIONS and/or restoration of intact DNA strands without BASE PAIR MISMATCHES, intrastrand or interstrand crosslinks, or discontinuities in the DNA sugar-phosphate backbones. DNA Damage Response
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D013941 Thymine One of four constituent bases of DNA. 5-Methyluracil,5 Methyluracil
D013942 Thymine Nucleotides Phosphate esters of THYMIDINE in N-glycosidic linkage with ribose or deoxyribose, as occurs in nucleic acids. (From Dorland, 28th ed, p1154) Thymidine Phosphates,Nucleotides, Thymine,Phosphates, Thymidine
D014166 Transferases Transferases are enzymes transferring a group, for example, the methyl group or a glycosyl group, from one compound (generally regarded as donor) to another compound (generally regarded as acceptor). The classification is based on the scheme "donor:acceptor group transferase". (Enzyme Nomenclature, 1992) EC 2. Transferase

Related Publications

H L Duran, and A A Wani
March 1982, Proceedings of the National Academy of Sciences of the United States of America,
H L Duran, and A A Wani
January 1988, IARC scientific publications,
H L Duran, and A A Wani
September 1974, Genetics,
H L Duran, and A A Wani
December 1974, Mutation research,
H L Duran, and A A Wani
November 1986, Proceedings of the National Academy of Sciences of the United States of America,
H L Duran, and A A Wani
January 1984, Molecular & general genetics : MGG,
H L Duran, and A A Wani
June 2006, CSH protocols,
Copied contents to your clipboard!