Antitumor effects of the silencing of programmed cell death ligand 1 in colorectal cancer via immunoregulation. 2018

Yilin Chen, and Ying Huang, and Xingrong Lu, and Gaoxiong Wang, and Pan Chi
Department of Colorectal Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China.

Activation of programmed cell death 1 (PD‑1)/PD‑ligand 1 (PD‑L1) can promote immune suppression of the tumor microenvironment. However, the effects and mechanisms of PD‑L1 silencing on colorectal cancer growth are largely unknown. In the present study, PD‑L1 expression was compared in colorectal cancer and paracancerous tissues by immunofluorescence. A stable colorectal carcinoma cell line encoding PD‑L1 short hairpin RNA (shRNA) was established. Thereafter, inoculated tumors were modeled in C57B/L6 mice. Experiments were divided into 3 groups: control group, vector group, and PD‑L1 silencing group (inoculated with the stable CT26 cell line encoding PD‑L1 shRNA). Following decapitation of the mice, tumors were weighed and apoptosis of tumor cells was detected. The number and viability of cluster of differentiation (CD)4+ and CD8+ T cells were analyzed by flow cytometry and a cell counting kit assay, respectively. Compared with paracancerous tissue, colorectal cancer tissue extensively expressed PD‑L1, RAC‑α serine/threonine‑protein kinase (AKT), and phosphatidylinositol 3‑kinase (PI3K). Lymphocyte‑activating gene 3 (LAG‑3) expression was observed at the edge of tumor tissue, but rarely observed in paracancerous tissue. A stable CT26 cell line encoding PD‑L1 shRNA was established, and lack of PD‑L1 expression was confirmed by reverse transcription‑polymerase chain reaction and western blotting. Compared with the control, the shPD‑L1 group demonstrated reduced tumor growth, a high level of apoptosis in tumor cells, a low level of PI3K and AKT expression, and an increased number of cells and greater activity of CD4+ T and CD8+ T cells. Taken together, PD‑L1 silencing promoted tumor cell apoptosis, at least in part, through the activation of CD4+ and CD8+ T cells.

UI MeSH Term Description Entries
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000093322 Lymphocyte Activation Gene 3 Protein A CD4-related protein with high affinity cell surface binding to MHC class II. It functions in downregulation of T cell proliferation following binding to MHC class II molecules. Antigens, CD223,CD223 Antigen,Lymphocyte Activation Gene 3 Proteins,CD223 Antigens
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015179 Colorectal Neoplasms Tumors or cancer of the COLON or the RECTUM or both. Risk factors for colorectal cancer include chronic ULCERATIVE COLITIS; FAMILIAL POLYPOSIS COLI; exposure to ASBESTOS; and irradiation of the CERVIX UTERI. Colorectal Cancer,Colorectal Carcinoma,Colorectal Tumors,Neoplasms, Colorectal,Cancer, Colorectal,Cancers, Colorectal,Carcinoma, Colorectal,Carcinomas, Colorectal,Colorectal Cancers,Colorectal Carcinomas,Colorectal Neoplasm,Colorectal Tumor,Neoplasm, Colorectal,Tumor, Colorectal,Tumors, Colorectal
D015496 CD4-Positive T-Lymphocytes A critical subpopulation of T-lymphocytes involved in the induction of most immunological functions. The HIV virus has selective tropism for the T4 cell which expresses the CD4 phenotypic marker, a receptor for HIV. In fact, the key element in the profound immunosuppression seen in HIV infection is the depletion of this subset of T-lymphocytes. T4 Cells,T4 Lymphocytes,CD4-Positive Lymphocytes,CD4 Positive T Lymphocytes,CD4-Positive Lymphocyte,CD4-Positive T-Lymphocyte,Lymphocyte, CD4-Positive,Lymphocytes, CD4-Positive,T-Lymphocyte, CD4-Positive,T-Lymphocytes, CD4-Positive,T4 Cell,T4 Lymphocyte
D015703 Antigens, CD Differentiation antigens residing on mammalian leukocytes. CD stands for cluster of differentiation, which refers to groups of monoclonal antibodies that show similar reactivity with certain subpopulations of antigens of a particular lineage or differentiation stage. The subpopulations of antigens are also known by the same CD designation. CD Antigen,Cluster of Differentiation Antigen,Cluster of Differentiation Marker,Differentiation Antigens, Leukocyte, Human,Leukocyte Differentiation Antigens, Human,Cluster of Differentiation Antigens,Cluster of Differentiation Markers,Antigen Cluster, Differentiation,Antigen, CD,CD Antigens,Differentiation Antigen Cluster,Differentiation Marker Cluster,Marker Cluster, Differentiation
D015854 Up-Regulation A positive regulatory effect on physiological processes at the molecular, cellular, or systemic level. At the molecular level, the major regulatory sites include membrane receptors, genes (GENE EXPRESSION REGULATION), mRNAs (RNA, MESSENGER), and proteins. Receptor Up-Regulation,Upregulation,Up-Regulation (Physiology),Up Regulation
D015972 Gene Expression Regulation, Neoplastic Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in neoplastic tissue. Neoplastic Gene Expression Regulation,Regulation of Gene Expression, Neoplastic,Regulation, Gene Expression, Neoplastic
D017209 Apoptosis A regulated cell death mechanism characterized by distinctive morphologic changes in the nucleus and cytoplasm, including the endonucleolytic cleavage of genomic DNA, at regularly spaced, internucleosomal sites, i.e., DNA FRAGMENTATION. It is genetically programmed and serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth. Apoptosis, Extrinsic Pathway,Apoptosis, Intrinsic Pathway,Caspase-Dependent Apoptosis,Classic Apoptosis,Classical Apoptosis,Programmed Cell Death,Programmed Cell Death, Type I,Apoptoses, Extrinsic Pathway,Apoptoses, Intrinsic Pathway,Apoptosis, Caspase-Dependent,Apoptosis, Classic,Apoptosis, Classical,Caspase Dependent Apoptosis,Cell Death, Programmed,Classic Apoptoses,Extrinsic Pathway Apoptoses,Extrinsic Pathway Apoptosis,Intrinsic Pathway Apoptoses,Intrinsic Pathway Apoptosis

Related Publications

Yilin Chen, and Ying Huang, and Xingrong Lu, and Gaoxiong Wang, and Pan Chi
June 2013, European journal of cancer (Oxford, England : 1990),
Yilin Chen, and Ying Huang, and Xingrong Lu, and Gaoxiong Wang, and Pan Chi
December 2018, Journal of thoracic disease,
Yilin Chen, and Ying Huang, and Xingrong Lu, and Gaoxiong Wang, and Pan Chi
September 2021, Bioorganic & medicinal chemistry,
Yilin Chen, and Ying Huang, and Xingrong Lu, and Gaoxiong Wang, and Pan Chi
March 2019, Endocrine practice : official journal of the American College of Endocrinology and the American Association of Clinical Endocrinologists,
Yilin Chen, and Ying Huang, and Xingrong Lu, and Gaoxiong Wang, and Pan Chi
January 2016, In vivo (Athens, Greece),
Yilin Chen, and Ying Huang, and Xingrong Lu, and Gaoxiong Wang, and Pan Chi
June 2018, Anticancer research,
Yilin Chen, and Ying Huang, and Xingrong Lu, and Gaoxiong Wang, and Pan Chi
July 2020, JAMA oncology,
Yilin Chen, and Ying Huang, and Xingrong Lu, and Gaoxiong Wang, and Pan Chi
July 2020, JAMA oncology,
Yilin Chen, and Ying Huang, and Xingrong Lu, and Gaoxiong Wang, and Pan Chi
July 2020, JAMA oncology,
Yilin Chen, and Ying Huang, and Xingrong Lu, and Gaoxiong Wang, and Pan Chi
July 2020, JAMA oncology,
Copied contents to your clipboard!