Auditory central gain compensates for changes in cochlear output after prolonged low-level noise exposure. 2018

Adam Sheppard, and Xiaopeng Liu, and Dalian Ding, and Richard Salvi
Center for Hearing and Deafness, State University of New York at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, USA. Electronic address: asheppar@buffalo.edu.

Remarkably, the central auditory system can modify the strength of its sound-evoked neural response based on prior acoustic experiences, a phenomenon referred to as central gain. Gain changes are well documented following traumatic noise exposure, but much less is known about central gain dynamics following prolonged exposure to low-level noise, a common acoustic experience in many urban and work environments. We recently reported that the neural output of the cochlea is reduced, while gain was enhanced in the inferior colliculus (IC) following a 5-week exposure to 75 dB noise. To determine if similar effects were present at even lower intensities, we exposed rats to a 65 dB noise expecting to see little to no change in the cochlea or IC. The exposure had little effect on distortion product otoacoustic emissions and did not cause any hair cell loss. However, the amplitude of the CAP, which reflects the neural output of cochlea, was depressed by 50-75%. Surprisingly, neural responses from the IC were enhanced up to 70%, mainly at frequencies within the noise exposure band. One-week post-exposure, CAP amplitudes returned to normal at frequencies within or above the exposure band, whereas responses evoked by frequencies below the exposure band were enhanced by more than 80%. In contrast, IC responses below the exposure frequency were depressed 10-20% whereas responses within the exposure frequency band were enhanced 10-20%. Thus, the central auditory system dynamically up- and down-regulates its gain to maintain supra-threshold neural responses within a narrow homeostatic range; a function that likely contributes to the prevention of sounds from being perceived as muffled or too loud.

UI MeSH Term Description Entries
D007245 Inferior Colliculi The posterior pair of the quadrigeminal bodies which contain centers for auditory function. Colliculus, Inferior,Brachial Nucleus of the Inferior Colliculus,Caudal Colliculus,Colliculus Inferior,Inferior Colliculus,Posterior Colliculus,Colliculi, Inferior,Colliculus Inferiors,Colliculus, Caudal,Colliculus, Posterior,Inferior, Colliculus,Inferiors, Colliculus
D009622 Noise Any sound which is unwanted or interferes with HEARING other sounds. Noise Pollution,Noises,Pollution, Noise
D003051 Cochlea The part of the inner ear (LABYRINTH) that is concerned with hearing. It forms the anterior part of the labyrinth, as a snail-like structure that is situated almost horizontally anterior to the VESTIBULAR LABYRINTH. Cochleas
D005072 Evoked Potentials, Auditory The electric response evoked in the CEREBRAL CORTEX by ACOUSTIC STIMULATION or stimulation of the AUDITORY PATHWAYS. Auditory Evoked Potentials,Auditory Evoked Response,Auditory Evoked Potential,Auditory Evoked Responses,Evoked Potential, Auditory,Evoked Response, Auditory,Evoked Responses, Auditory,Potentials, Auditory Evoked
D006198 Hair Cells, Auditory Sensory cells in the organ of Corti, characterized by their apical stereocilia (hair-like projections). The inner and outer hair cells, as defined by their proximity to the core of spongy bone (the modiolus), change morphologically along the COCHLEA. Towards the cochlear apex, the length of hair cell bodies and their apical STEREOCILIA increase, allowing differential responses to various frequencies of sound. Auditory Hair Cells,Cochlear Hair Cells,Auditory Hair Cell,Cell, Cochlear Hair,Cells, Cochlear Hair,Cochlear Hair Cell,Hair Cell, Auditory,Hair Cell, Cochlear,Hair Cells, Cochlear
D006309 Hearing The ability or act of sensing and transducing ACOUSTIC STIMULATION to the CENTRAL NERVOUS SYSTEM. It is also called audition. Audition
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001309 Auditory Threshold The audibility limit of discriminating sound intensity and pitch. Auditory Thresholds,Threshold, Auditory,Thresholds, Auditory
D017084 Otoacoustic Emissions, Spontaneous Self-generated faint acoustic signals from the inner ear (COCHLEA) without external stimulation. These faint signals can be recorded in the EAR CANAL and are indications of active OUTER AUDITORY HAIR CELLS. Spontaneous otoacoustic emissions are found in all classes of land vertebrates. Spontaneous Otoacoustic Emissions,Otoacoustic Emission, Spontaneous,Spontaneous Otoacoustic Emission
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats

Related Publications

Adam Sheppard, and Xiaopeng Liu, and Dalian Ding, and Richard Salvi
September 2017, Neuroscience,
Adam Sheppard, and Xiaopeng Liu, and Dalian Ding, and Richard Salvi
January 1979, Archives of oto-rhino-laryngology,
Adam Sheppard, and Xiaopeng Liu, and Dalian Ding, and Richard Salvi
January 1976, Archivos de investigacion medica,
Adam Sheppard, and Xiaopeng Liu, and Dalian Ding, and Richard Salvi
January 2018, eNeuro,
Adam Sheppard, and Xiaopeng Liu, and Dalian Ding, and Richard Salvi
April 2012, Journal of neurotrauma,
Adam Sheppard, and Xiaopeng Liu, and Dalian Ding, and Richard Salvi
January 2020, International journal of audiology,
Adam Sheppard, and Xiaopeng Liu, and Dalian Ding, and Richard Salvi
November 2014, Hearing research,
Adam Sheppard, and Xiaopeng Liu, and Dalian Ding, and Richard Salvi
June 2020, American journal of audiology,
Adam Sheppard, and Xiaopeng Liu, and Dalian Ding, and Richard Salvi
February 2016, Neuron,
Adam Sheppard, and Xiaopeng Liu, and Dalian Ding, and Richard Salvi
June 2011, Biochemical and biophysical research communications,
Copied contents to your clipboard!